Jiacheng Liu , Meiling Liang , Jinxuan Ma , Liyuan Jiang , Hanbing Chu , Chao Guo , Jianjun Yu , Yujin Zong , Mingxi Wan
{"title":"Microbubble tracking based on partial smoothing-based adaptive generalized labelled Multi-Bernoulli filter for super-resolution imaging","authors":"Jiacheng Liu , Meiling Liang , Jinxuan Ma , Liyuan Jiang , Hanbing Chu , Chao Guo , Jianjun Yu , Yujin Zong , Mingxi Wan","doi":"10.1016/j.ultras.2024.107455","DOIUrl":null,"url":null,"abstract":"<div><div>Super-resolution ultrasound (SRUS) can image the vasculature at microscopic resolution according to microbubble (MB) localization, with velocity vector maps obtained based on MB tracking information. High MB concentrations can reduce the acquisition time of SRUS imaging, however adjacent and intersecting vessels are difficult to distinguish, thus decreasing resolution. Low acquisition frame rates affect the precision of flow velocity estimation. This study proposes a partial smoothing-based adaptive generalized labeled multi-Bernoulli filter (SAGLMB) to precisely track the MB motion at different flow velocities. SAGLMB employs a generalized labelled multi-Bernoulli filter (GLMB) for MB trajectory allocation to separate adjacent and intersecting vessels. Furthermore, the nonlinear motion of MB was predicted by an unscented Kalman filter, and a cardinalized probability hypothesis density filter was applied to suppress clutter interference. Finally, the trajectories were smoothed by unscented Rauch-Tung-Striebel to improve the resolution of the SRUS image. The simulation results demonstrate that SAGLMB outperforms the conventional bipartite graph-based tracking at high MB concentrations, achieving at least an 8.55 % improvement in the correctly paired precision, with 3 times increase in the structural similarity index measure. Moreover, SAGLMB can obtain more precise flow velocity estimations with a 4 times improvement than the conventional method. The SRUS results of rabbit kidney show that the proposed method significantly improves resolution of adjacent and intersecting vessels at higher MB concentrations and maintains this performance as the acquisition frame rate decreases. Furthermore, the rat brain microvascular network was reconstructed with 9.21 μm (λ/11.1) resolution. Therefore, SAGLMB can achieve robust SRUS imaging at high concentrations and low acquisition frame rates.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"145 ","pages":"Article 107455"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X2400218X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Super-resolution ultrasound (SRUS) can image the vasculature at microscopic resolution according to microbubble (MB) localization, with velocity vector maps obtained based on MB tracking information. High MB concentrations can reduce the acquisition time of SRUS imaging, however adjacent and intersecting vessels are difficult to distinguish, thus decreasing resolution. Low acquisition frame rates affect the precision of flow velocity estimation. This study proposes a partial smoothing-based adaptive generalized labeled multi-Bernoulli filter (SAGLMB) to precisely track the MB motion at different flow velocities. SAGLMB employs a generalized labelled multi-Bernoulli filter (GLMB) for MB trajectory allocation to separate adjacent and intersecting vessels. Furthermore, the nonlinear motion of MB was predicted by an unscented Kalman filter, and a cardinalized probability hypothesis density filter was applied to suppress clutter interference. Finally, the trajectories were smoothed by unscented Rauch-Tung-Striebel to improve the resolution of the SRUS image. The simulation results demonstrate that SAGLMB outperforms the conventional bipartite graph-based tracking at high MB concentrations, achieving at least an 8.55 % improvement in the correctly paired precision, with 3 times increase in the structural similarity index measure. Moreover, SAGLMB can obtain more precise flow velocity estimations with a 4 times improvement than the conventional method. The SRUS results of rabbit kidney show that the proposed method significantly improves resolution of adjacent and intersecting vessels at higher MB concentrations and maintains this performance as the acquisition frame rate decreases. Furthermore, the rat brain microvascular network was reconstructed with 9.21 μm (λ/11.1) resolution. Therefore, SAGLMB can achieve robust SRUS imaging at high concentrations and low acquisition frame rates.
期刊介绍:
Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed.
As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.