{"title":"Numerical study on enhanced-diffusion characteristics of kerosene jet in supersonic crossflow","authors":"Guangjun Feng, Junlong Zhang, Qingyuan Deng, Hongchao Qiu, Guowei Luan, Wen Bao","doi":"10.1016/j.ijmultiphaseflow.2024.104983","DOIUrl":null,"url":null,"abstract":"<div><div>The enhanced-diffusion characteristics of kerosene jet in supersonic crossflow under different supersonic mainstream and kerosene injection conditions were discussed in this paper. Numerous numerical simulations were conducted under varying shock wave intensities, injection momentum flux ratio conditions based on Euler-Lagrangian method. The influence of low-enthalpy (<em>T</em><sub>t</sub>=300 K) and high-enthalpy (<em>T</em><sub>t</sub>=1680 K) supersonic inflow conditions on kerosene diffusion was also involved. The results indicate that the momentum flux ratio caused by injection and evaporation jointly determines the diffusion ability of kerosene. The increase of injection momentum flux ratio and shock wave intensity promotes both the penetration ability and evaporation gain. However, the relative growth rate of penetration depth decreases, and the relative growth rate of evaporation penetration gain increases. As the jet momentum flow ratio decreases and the shock wave intensity increases, the mixing efficiency and relative growth rate of kerosene increase. A judicious design of injection measures proves to be an effective approach for enhancing the diffusion and mixing of kerosene, which holds significant importance in further enhancing the performance of supersonic combustors.</div></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":"181 ","pages":"Article 104983"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030193222400260X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The enhanced-diffusion characteristics of kerosene jet in supersonic crossflow under different supersonic mainstream and kerosene injection conditions were discussed in this paper. Numerous numerical simulations were conducted under varying shock wave intensities, injection momentum flux ratio conditions based on Euler-Lagrangian method. The influence of low-enthalpy (Tt=300 K) and high-enthalpy (Tt=1680 K) supersonic inflow conditions on kerosene diffusion was also involved. The results indicate that the momentum flux ratio caused by injection and evaporation jointly determines the diffusion ability of kerosene. The increase of injection momentum flux ratio and shock wave intensity promotes both the penetration ability and evaporation gain. However, the relative growth rate of penetration depth decreases, and the relative growth rate of evaporation penetration gain increases. As the jet momentum flow ratio decreases and the shock wave intensity increases, the mixing efficiency and relative growth rate of kerosene increase. A judicious design of injection measures proves to be an effective approach for enhancing the diffusion and mixing of kerosene, which holds significant importance in further enhancing the performance of supersonic combustors.
期刊介绍:
The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others.
The journal publishes full papers, brief communications and conference announcements.