{"title":"Large language models as surrogate models in evolutionary algorithms: A preliminary study","authors":"Hao Hao , Xiaoqun Zhang , Aimin Zhou","doi":"10.1016/j.swevo.2024.101741","DOIUrl":null,"url":null,"abstract":"<div><div>Large Language Models (LLMs) have demonstrated remarkable advancements across diverse domains, manifesting considerable capabilities in evolutionary computation, notably in generating new solutions and automating algorithm design. Surrogate-assisted selection plays a pivotal role in evolutionary algorithms (EAs), especially in addressing expensive optimization problems by reducing the number of real function evaluations. However, whether LLMs can serve as surrogate models remains an unknown. In this study, we propose a novel surrogate model based purely on LLM inference capabilities, eliminating the need for training. Specifically, we formulate model-assisted selection as a classification problem or a regression problem, utilizing LLMs to directly evaluate the quality of new solutions based on historical data. This involves predicting whether a solution is good or bad, or approximating its value. This approach is then integrated into EAs, termed LLM-assisted EA (LAEA). Detailed experiments compared the visualization results of 2D data from 9 mainstream LLMs, as well as their performance on 5-10 dimensional problems. The experimental results demonstrate that LLMs have significant potential as surrogate models in evolutionary computation, achieving performance comparable to traditional surrogate models only using inference. This work offers new insights into the application of LLMs in evolutionary computation. Code is available at: <span><span>https://github.com/hhyqhh/LAEA.git</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"91 ","pages":"Article 101741"},"PeriodicalIF":8.2000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224002797","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Large Language Models (LLMs) have demonstrated remarkable advancements across diverse domains, manifesting considerable capabilities in evolutionary computation, notably in generating new solutions and automating algorithm design. Surrogate-assisted selection plays a pivotal role in evolutionary algorithms (EAs), especially in addressing expensive optimization problems by reducing the number of real function evaluations. However, whether LLMs can serve as surrogate models remains an unknown. In this study, we propose a novel surrogate model based purely on LLM inference capabilities, eliminating the need for training. Specifically, we formulate model-assisted selection as a classification problem or a regression problem, utilizing LLMs to directly evaluate the quality of new solutions based on historical data. This involves predicting whether a solution is good or bad, or approximating its value. This approach is then integrated into EAs, termed LLM-assisted EA (LAEA). Detailed experiments compared the visualization results of 2D data from 9 mainstream LLMs, as well as their performance on 5-10 dimensional problems. The experimental results demonstrate that LLMs have significant potential as surrogate models in evolutionary computation, achieving performance comparable to traditional surrogate models only using inference. This work offers new insights into the application of LLMs in evolutionary computation. Code is available at: https://github.com/hhyqhh/LAEA.git.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.