Maeruines A−E, elusive indole alkaloids from stems of Maerua siamensis and their inhibitory effects on cyclooxygenases and HT-29 colorectal cancer cell proliferation
{"title":"Maeruines A−E, elusive indole alkaloids from stems of Maerua siamensis and their inhibitory effects on cyclooxygenases and HT-29 colorectal cancer cell proliferation","authors":"Sasiwimon Nukulkit , Nonthaneth Nalinratana , Thammarat Aree , Utid Suriya , Rutt Suttisri , Nitra Nuengchamnong , Hsun-Shuo Chang , Chaisak Chansriniyom","doi":"10.1016/j.phytochem.2024.114291","DOIUrl":null,"url":null,"abstract":"<div><div>Five previously undescribed indole alkaloids, maeruines A−E (<strong>1</strong>−<strong>5</strong>), bearing imino-2<em>H</em>-thieno[2,3-<em>b</em>]indol-3(8<em>H</em>)-one skeleton, were obtained from the stems of <em>Maerua siamensis</em>. Their chemical structures were elucidated using spectroscopic techniques [NMR, MS, IR, and UV], and single-crystal X-ray diffraction. Maeruine D (<strong>4</strong>) displayed selective cyclooxygenase-2 (COX-2) inhibitory activity <em>in vitro</em> with an IC<sub>50</sub> of 29.72 ± 6.36 μM. Molecular dynamics simulations revealed that maeruine D could form a stable complex with human COX-2, predominantly driven by hydrophobic interactions. In addition, five amino-acid residues including Val349, Leu352, Leu384, Val523, and Ala527 were identified as hot-spot ones, which may lead to high binding affinity and selectivity. Furthermore, it exhibited cytotoxicity against HT-29 colorectal cancer cells with an IC<sub>50</sub> of 29.32 ± 4.76 μM, and, at 0.1−10 μM, significantly inhibited their proliferation, induced by the proinflammatory cytokine interleukin-1β (IL-1β), in a dose-dependent manner.</div></div>","PeriodicalId":20170,"journal":{"name":"Phytochemistry","volume":"229 ","pages":"Article 114291"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031942224003285","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Five previously undescribed indole alkaloids, maeruines A−E (1−5), bearing imino-2H-thieno[2,3-b]indol-3(8H)-one skeleton, were obtained from the stems of Maerua siamensis. Their chemical structures were elucidated using spectroscopic techniques [NMR, MS, IR, and UV], and single-crystal X-ray diffraction. Maeruine D (4) displayed selective cyclooxygenase-2 (COX-2) inhibitory activity in vitro with an IC50 of 29.72 ± 6.36 μM. Molecular dynamics simulations revealed that maeruine D could form a stable complex with human COX-2, predominantly driven by hydrophobic interactions. In addition, five amino-acid residues including Val349, Leu352, Leu384, Val523, and Ala527 were identified as hot-spot ones, which may lead to high binding affinity and selectivity. Furthermore, it exhibited cytotoxicity against HT-29 colorectal cancer cells with an IC50 of 29.32 ± 4.76 μM, and, at 0.1−10 μM, significantly inhibited their proliferation, induced by the proinflammatory cytokine interleukin-1β (IL-1β), in a dose-dependent manner.
期刊介绍:
Phytochemistry is a leading international journal publishing studies of plant chemistry, biochemistry, molecular biology and genetics, structure and bioactivities of phytochemicals, including ''-omics'' and bioinformatics/computational biology approaches. Phytochemistry is a primary source for papers dealing with phytochemicals, especially reports concerning their biosynthesis, regulation, and biological properties both in planta and as bioactive principles. Articles are published online as soon as possible as Articles-in-Press and in 12 volumes per year. Occasional topic-focussed special issues are published composed of papers from invited authors.