{"title":"A comprehensive study on porosity modelling and its impact on fracture behavior of edge cracked FG structures using XIGA","authors":"Sushant Kumar, Gagandeep Bhardwaj, Neeraj Grover","doi":"10.1016/j.compstruct.2024.118602","DOIUrl":null,"url":null,"abstract":"<div><div>In the present work, the fracture analysis of functionally graded (FG) porous structure containing an edge cracked is carried out in the presence of different types of porosity distributions using extended isogeometric analysis (XIGA). Firstly, the different types of porosity distribution functions are mathematically modeled in the porous FG structure across the length of the domain. The effective properties of the porous FG structure are computed using power law. Also, an additional term of porosity is incorporated in the power law to include the effect of porosity in the FG structure. The effective properties are computed across the length of the structure in the presence of different types of porosity distributions. Further, a pre-existing crack is modeled in the domain to study its influence on the fracture behaviour of porous FG structure using XIGA. To validate the accuracy, the results for the non-porous FG structure are compared with the available results in the literature (with the analytical and numerical solution), and they are found in good agreement (percentage error in the range of 0.04–––1.78%). Moreover, the comparative study is performed to investigate the influence of different types of porosity distributions on the fracture behaviour of FG structure.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"351 ","pages":"Article 118602"},"PeriodicalIF":6.3000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026382232400730X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
In the present work, the fracture analysis of functionally graded (FG) porous structure containing an edge cracked is carried out in the presence of different types of porosity distributions using extended isogeometric analysis (XIGA). Firstly, the different types of porosity distribution functions are mathematically modeled in the porous FG structure across the length of the domain. The effective properties of the porous FG structure are computed using power law. Also, an additional term of porosity is incorporated in the power law to include the effect of porosity in the FG structure. The effective properties are computed across the length of the structure in the presence of different types of porosity distributions. Further, a pre-existing crack is modeled in the domain to study its influence on the fracture behaviour of porous FG structure using XIGA. To validate the accuracy, the results for the non-porous FG structure are compared with the available results in the literature (with the analytical and numerical solution), and they are found in good agreement (percentage error in the range of 0.04–––1.78%). Moreover, the comparative study is performed to investigate the influence of different types of porosity distributions on the fracture behaviour of FG structure.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.