{"title":"A novel advanced block assembly method with 3D printed channel systems","authors":"Tae Hee Lee , Kwonhwan Ko , Jung-Wuk Hong","doi":"10.1016/j.compstruct.2024.118584","DOIUrl":null,"url":null,"abstract":"<div><div>Modular construction offers economic and environmental advantages over conventional construction technologies. Although several researchers have introduced various modular construction systems, the methods for creating channel structures within block modules and injecting epoxy resin to connect blocks efficiently have not been fully explored. This study proposes a new assembly channel system for modular construction using 3D printing. Four different channel types are fabricated using 3D printing, and epoxy resin is injected for block connections. The relationships between channel geometries and structural resistance are thoroughly analyzed with the uniaxial tensile and three-point bending tests. Both experiments are also numerically simulated using the finite element method to validate the modeling methodology for assembly channel systems. The validated methodology is useful for evaluating assembly channel systems and enhancing the design of such systems. Overall, this study can foster the practical application of modularization across various industrial fields.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"351 ","pages":"Article 118584"},"PeriodicalIF":6.3000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324007128","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Modular construction offers economic and environmental advantages over conventional construction technologies. Although several researchers have introduced various modular construction systems, the methods for creating channel structures within block modules and injecting epoxy resin to connect blocks efficiently have not been fully explored. This study proposes a new assembly channel system for modular construction using 3D printing. Four different channel types are fabricated using 3D printing, and epoxy resin is injected for block connections. The relationships between channel geometries and structural resistance are thoroughly analyzed with the uniaxial tensile and three-point bending tests. Both experiments are also numerically simulated using the finite element method to validate the modeling methodology for assembly channel systems. The validated methodology is useful for evaluating assembly channel systems and enhancing the design of such systems. Overall, this study can foster the practical application of modularization across various industrial fields.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.