Xianzhou Dong , Yongqiang Luo , Shuo Yuan , Zhiyong Tian , Limao Zhang , Xiaoying Wu , Baobing Liu
{"title":"Building electricity load forecasting based on spatiotemporal correlation and electricity consumption behavior information","authors":"Xianzhou Dong , Yongqiang Luo , Shuo Yuan , Zhiyong Tian , Limao Zhang , Xiaoying Wu , Baobing Liu","doi":"10.1016/j.apenergy.2024.124580","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate prediction of building electricity load is essential for grid management and building optimization operations. This paper proposes a novel approach based on spatiotemporal correlations and electricity consumption behavior information. The K-Medoids algorithm and the Derivative Dynamic Time Warping (DDTW) distance are employed to explore the correlation between electricity consumption behaviors among different partitions and floors. Different partitions and floors are clustered and grouped, followed by modifying the adjacency matrix with electricity consumption behaviors. The hybrid model and K-Medoids-LSTM model are proposed separately for clusterable nodes and non-clustered nodes. For clusterable nodes, spatial-temporal features are extracted, trained, and predicted with the hybrid model based on graph neural networks (GNNs) and LSTM models. A K-Medoids-LSTM model based on the K-Medoids algorithm is proposed to predict the electricity load of the non-clustered nodes. To explore the model's practicality, we predicted the building electrical load under different dataset sizes. The model achieves an R<sup>2</sup> above 0.89, and the MAE, MSE, and RMSE of the GCN-LSTM and GAT-LSTM models all remain below 0.1, indicating strong predictive capabilities. The results demonstrate that, without relying on other external features, the proposed method can accurately predict the building electricity load for different partitions and floors simultaneously.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"377 ","pages":"Article 124580"},"PeriodicalIF":10.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924019639","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate prediction of building electricity load is essential for grid management and building optimization operations. This paper proposes a novel approach based on spatiotemporal correlations and electricity consumption behavior information. The K-Medoids algorithm and the Derivative Dynamic Time Warping (DDTW) distance are employed to explore the correlation between electricity consumption behaviors among different partitions and floors. Different partitions and floors are clustered and grouped, followed by modifying the adjacency matrix with electricity consumption behaviors. The hybrid model and K-Medoids-LSTM model are proposed separately for clusterable nodes and non-clustered nodes. For clusterable nodes, spatial-temporal features are extracted, trained, and predicted with the hybrid model based on graph neural networks (GNNs) and LSTM models. A K-Medoids-LSTM model based on the K-Medoids algorithm is proposed to predict the electricity load of the non-clustered nodes. To explore the model's practicality, we predicted the building electrical load under different dataset sizes. The model achieves an R2 above 0.89, and the MAE, MSE, and RMSE of the GCN-LSTM and GAT-LSTM models all remain below 0.1, indicating strong predictive capabilities. The results demonstrate that, without relying on other external features, the proposed method can accurately predict the building electricity load for different partitions and floors simultaneously.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.