Design and numerical analysis of a Y-shaped flow channel for enhanced hydrogen production in solid oxide electrolysis cells

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yachao Tu , Haoxiang Lin , Mingliang Chen , Zhonggang Zhang , Weiqiang Cai , Zhaoyi Zhu
{"title":"Design and numerical analysis of a Y-shaped flow channel for enhanced hydrogen production in solid oxide electrolysis cells","authors":"Yachao Tu ,&nbsp;Haoxiang Lin ,&nbsp;Mingliang Chen ,&nbsp;Zhonggang Zhang ,&nbsp;Weiqiang Cai ,&nbsp;Zhaoyi Zhu","doi":"10.1016/j.ijoes.2024.100806","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen produced from renewable sources is crucial for reducing carbon emissions and mitigating the impact of greenhouse gases. Solid Oxide Electrolysis Cells (SOECs) offer high efficiency in this regard, making them a focus of significant research interest. This study introduces a novel approach using numerical simulations to design a Y-shaped flow channel interconnector for the first time. A three-dimensional multiphysics coupling mathematical model is developed to investigate hydrogen production via water electrolysis in SOECs. Comparative analysis between the new Y-shaped flow channel and traditional straight channel SOEC models covers component distribution, temperature field, electrolyte current density, and thermal stress. Simulation results indicate a 20.72 % increase in hydrolysis rate with the Y-shaped channel under a counter-flow arrangement compared to the conventional straight channel. The rhombic connectors in the Y-shaped design lead to a more uniform current density distribution, with a maximum current density higher by approximately 647 A/m<sup>2</sup> than the straight channel. However, the Y-shaped channel exhibits higher temperatures, resulting in larger thermal stress.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1452398124003481","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen produced from renewable sources is crucial for reducing carbon emissions and mitigating the impact of greenhouse gases. Solid Oxide Electrolysis Cells (SOECs) offer high efficiency in this regard, making them a focus of significant research interest. This study introduces a novel approach using numerical simulations to design a Y-shaped flow channel interconnector for the first time. A three-dimensional multiphysics coupling mathematical model is developed to investigate hydrogen production via water electrolysis in SOECs. Comparative analysis between the new Y-shaped flow channel and traditional straight channel SOEC models covers component distribution, temperature field, electrolyte current density, and thermal stress. Simulation results indicate a 20.72 % increase in hydrolysis rate with the Y-shaped channel under a counter-flow arrangement compared to the conventional straight channel. The rhombic connectors in the Y-shaped design lead to a more uniform current density distribution, with a maximum current density higher by approximately 647 A/m2 than the straight channel. However, the Y-shaped channel exhibits higher temperatures, resulting in larger thermal stress.
设计 Y 型流道并对其进行数值分析,以提高固体氧化物电解槽的制氢能力
利用可再生资源生产氢气对于减少碳排放和减轻温室气体的影响至关重要。固体氧化物电解池(SOEC)在这方面具有很高的效率,因此成为研究的重点。本研究首次采用数值模拟的新方法来设计 Y 型流道互联器。研究还建立了一个三维多物理场耦合数学模型,以研究 SOECs 中通过电解水制氢的情况。新的 Y 型流道与传统直流道 SOEC 模型之间的比较分析包括成分分布、温度场、电解质电流密度和热应力。模拟结果表明,在逆流布置下,Y 型流道的水解率比传统直流道提高了 20.72%。Y 型设计中的菱形连接器使电流密度分布更加均匀,最大电流密度比直槽高出约 647 A/m2 。不过,Y 型通道的温度更高,导致热应力更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信