Weslley Fernandes-Braga, Maria A Curotto de Lafaille
{"title":"B cell memory of Immunoglobulin E (IgE) antibody responses in allergy","authors":"Weslley Fernandes-Braga, Maria A Curotto de Lafaille","doi":"10.1016/j.coi.2024.102488","DOIUrl":null,"url":null,"abstract":"<div><div>Immunoglobulin E (IgE)-mediated allergic diseases are driven by high-affinity allergen-specific IgE antibodies. IgE antibodies bind to Fc epsilon receptors on mast cells, prompting their degranulation and initiating inflammatory reactions upon allergen crosslinking. While most IgE-producing plasma cells have short lifespans, and IgE memory B cells are exceedingly rare, studies have indicated that non-IgE-expressing type 2–polarized IgG memory B cells serve as a reservoir of IgE memory in allergies. This review explores the B cell populations underlying IgE-mediated allergies, including the cellular and molecular processes that drive IgE class switching from non-IgE memory B cells. It highlights emerging evidence from human studies identifying type 2 IgG memory B cells as the source of pathogenic IgE in allergic responses.</div></div>","PeriodicalId":11361,"journal":{"name":"Current Opinion in Immunology","volume":"91 ","pages":"Article 102488"},"PeriodicalIF":6.6000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952791524000785","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Immunoglobulin E (IgE)-mediated allergic diseases are driven by high-affinity allergen-specific IgE antibodies. IgE antibodies bind to Fc epsilon receptors on mast cells, prompting their degranulation and initiating inflammatory reactions upon allergen crosslinking. While most IgE-producing plasma cells have short lifespans, and IgE memory B cells are exceedingly rare, studies have indicated that non-IgE-expressing type 2–polarized IgG memory B cells serve as a reservoir of IgE memory in allergies. This review explores the B cell populations underlying IgE-mediated allergies, including the cellular and molecular processes that drive IgE class switching from non-IgE memory B cells. It highlights emerging evidence from human studies identifying type 2 IgG memory B cells as the source of pathogenic IgE in allergic responses.
期刊介绍:
Current Opinion in Immunology aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In Current Opinion in Immunology we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
Current Opinion in Immunology will serve as an invaluable source of information for researchers, lecturers, teachers, professionals, policy makers and students.
Current Opinion in Immunology builds on Elsevier''s reputation for excellence in scientific publishing and long-standing commitment to communicating reproducible biomedical research targeted at improving human health. It is a companion to the new Gold Open Access journal Current Research in Immunology and is part of the Current Opinion and Research(CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists'' workflow.