Advancing estuarine box modeling: A novel hybrid machine learning and physics-based approach

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Rosalia Maglietta , Giorgia Verri , Leonardo Saccotelli , Alessandro De Lorenzis , Carla Cherubini , Rocco Caccioppoli , Giovanni Dimauro , Giovanni Coppini
{"title":"Advancing estuarine box modeling: A novel hybrid machine learning and physics-based approach","authors":"Rosalia Maglietta ,&nbsp;Giorgia Verri ,&nbsp;Leonardo Saccotelli ,&nbsp;Alessandro De Lorenzis ,&nbsp;Carla Cherubini ,&nbsp;Rocco Caccioppoli ,&nbsp;Giovanni Dimauro ,&nbsp;Giovanni Coppini","doi":"10.1016/j.envsoft.2024.106223","DOIUrl":null,"url":null,"abstract":"<div><div>Estuaries play a crucial role in the maintenance of the ecological balance of coastal ecosystems. Salinity intrusion can disrupt these fragile ecosystems, impacting aquatic life and human activities in coastal regions. An accurate prediction of salinity intrusion is essential for managing water resources and preserving ecosystems. This paper introduces a novel hybrid tool, called Hybrid-EBM model, designed to predict the salt-wedge intrusion length and the salinity at river mouth of an estuary. Combining the state-of-the-art Estuary Box Model (EBM) with machine learning algorithms, the new Hybrid-EBM model provides an accurate forecast of the salinity intrusion events. Experimental results highlight the effectiveness of Hybrid-EBM in salinity prediction with an RMSE of 3.41 psu against the 4.22 obtained by EBM. The outputs of this paper represent a significant advancement in the understanding of the impacts of salinity intrusion along the estuarine ecosystems, contributing to the sustainability of the coastal regions worldwide.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"183 ","pages":"Article 106223"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224002846","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Estuaries play a crucial role in the maintenance of the ecological balance of coastal ecosystems. Salinity intrusion can disrupt these fragile ecosystems, impacting aquatic life and human activities in coastal regions. An accurate prediction of salinity intrusion is essential for managing water resources and preserving ecosystems. This paper introduces a novel hybrid tool, called Hybrid-EBM model, designed to predict the salt-wedge intrusion length and the salinity at river mouth of an estuary. Combining the state-of-the-art Estuary Box Model (EBM) with machine learning algorithms, the new Hybrid-EBM model provides an accurate forecast of the salinity intrusion events. Experimental results highlight the effectiveness of Hybrid-EBM in salinity prediction with an RMSE of 3.41 psu against the 4.22 obtained by EBM. The outputs of this paper represent a significant advancement in the understanding of the impacts of salinity intrusion along the estuarine ecosystems, contributing to the sustainability of the coastal regions worldwide.
推进河口箱建模:新颖的机器学习和物理混合方法
河口在维持沿岸生态系统的生态平衡方面发挥着至关重要的作用。盐度入侵会破坏这些脆弱的生态系统,影响沿海地区的水生生物和人类活动。准确预测盐度入侵对管理水资源和保护生态系统至关重要。本文介绍了一种新颖的混合工具,即 Hybrid-EBM 模型,用于预测盐边入侵长度和河口盐度。新的 Hybrid-EBM 模型将最先进的河口箱模型(EBM)与机器学习算法相结合,可准确预测盐度入侵事件。实验结果凸显了混合-EBM 在盐度预测方面的有效性,与 EBM 得出的 4.22 psu 相比,混合-EBM 的均方根误差为 3.41 psu。本文的研究成果极大地促进了人们对河口生态系统盐度入侵影响的认识,有助于全球沿海地区的可持续发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信