The influence of the solar wind electric and magnetic fields on the latitude and temporal variations of the current density, JZ, of the global electric circuit, with relevance to weather and climate

IF 1.8 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Brian A. Tinsley
{"title":"The influence of the solar wind electric and magnetic fields on the latitude and temporal variations of the current density, JZ, of the global electric circuit, with relevance to weather and climate","authors":"Brian A. Tinsley","doi":"10.1016/j.jastp.2024.106355","DOIUrl":null,"url":null,"abstract":"<div><div>Observations have shown small day-to-day stratiform cloud opacity and atmospheric dynamical responses to variations in the ionosphere-earth current density (<em>J</em><sub><em>Z</em></sub><em>).</em> We model the day-to-day and seasonal/bi-decadal changes in the area-integrals of ionospheric potential (<em>V</em><sub><em>i</em></sub>) near the magnetic poles due to solar wind electric field inputs. The overhead value of <em>V</em><sub><em>i</em></sub>, divided by the local column resistance (<em>R</em>) determines <em>J</em><sub><em>Z</em></sub>, where the conductivity of the column is the result of ionization by galactic cosmic rays (GCRs) and solar and magnetospheric energetic particle precipitation. These vary with time, due to varying solar wind magnetic field inputs, not only on the day-to-day timescale (e.g., Forbush decreases) but also on the decadal and bi-decadal and century timescales. The GCR and energetic particle inputs vary with latitude, due to filtering of particle energies in the geomagnetic field. We compare area-integrals of the amplitude of the <em>J</em><sub><em>Z</em></sub> variations due to <em>V</em><sub><em>i</em></sub> changes to those due to the <em>R</em> changes, for evaluating their global effectiveness in affecting cloud microphysics and weather and climate changes. The day-to-day and bi-decadal correlated weather and climate variations indicate <em>J</em><sub><em>Z</em></sub> rather than other solar forcings as mainly responsible for the correlations. The decadal and longer climate responses to space weather are not large; however, understanding them could help improve predictions of future climate change due to greenhouse gases.</div></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682624001834","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Observations have shown small day-to-day stratiform cloud opacity and atmospheric dynamical responses to variations in the ionosphere-earth current density (JZ). We model the day-to-day and seasonal/bi-decadal changes in the area-integrals of ionospheric potential (Vi) near the magnetic poles due to solar wind electric field inputs. The overhead value of Vi, divided by the local column resistance (R) determines JZ, where the conductivity of the column is the result of ionization by galactic cosmic rays (GCRs) and solar and magnetospheric energetic particle precipitation. These vary with time, due to varying solar wind magnetic field inputs, not only on the day-to-day timescale (e.g., Forbush decreases) but also on the decadal and bi-decadal and century timescales. The GCR and energetic particle inputs vary with latitude, due to filtering of particle energies in the geomagnetic field. We compare area-integrals of the amplitude of the JZ variations due to Vi changes to those due to the R changes, for evaluating their global effectiveness in affecting cloud microphysics and weather and climate changes. The day-to-day and bi-decadal correlated weather and climate variations indicate JZ rather than other solar forcings as mainly responsible for the correlations. The decadal and longer climate responses to space weather are not large; however, understanding them could help improve predictions of future climate change due to greenhouse gases.
太阳风电场和磁场对全球电路电流密度 JZ 的纬度和时间变化的影响,以及与天气和气候的关系
观测结果表明,电离层-地球电流密度(JZ)的变化对层状云不透明度和大气动态响应的日变化很小。我们模拟了太阳风电场输入引起的磁极附近电离层电势(Vi)区域积分的逐日和季节/双十年变化。Vi 的开销值除以本地电离层柱电阻(R)决定了 JZ,其中电离层柱的电导率是银河宇宙射线(GCR)以及太阳和磁层高能粒子沉淀电离的结果。由于太阳风磁场输入的变化,这些因素随时间而变化,不仅在逐日时间尺度上(如福布什下降),而且在十年、双十年和世纪时间尺度上也是如此。由于地磁场对粒子能量的过滤作用,全球核磁共振和高能粒子输入量随纬度而变化。我们比较了 Vi 变化和 R 变化引起的 JZ 变幅的面积积分,以评估它们在影响云微观物理和天气及气候变化方面的全球效力。逐日和双十年相关天气和气候变迁表明,JZ 而不是其他太阳作用力是造成相关性的主要原因。对空间天气的十年期和更长气候响应并不大;但是,了解这些响应有助于改进对温室气体导致的未来气候变化的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Atmospheric and Solar-Terrestrial Physics
Journal of Atmospheric and Solar-Terrestrial Physics 地学-地球化学与地球物理
CiteScore
4.10
自引率
5.30%
发文量
95
审稿时长
6 months
期刊介绍: The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them. The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions. Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信