Yael Tzror , Mark Bezner , Shani Deri , Tom Trigano , Kfir Ben-Harush
{"title":"Nanofilament organization in highly tough fibers based on lamin proteins","authors":"Yael Tzror , Mark Bezner , Shani Deri , Tom Trigano , Kfir Ben-Harush","doi":"10.1016/j.jmbbm.2024.106748","DOIUrl":null,"url":null,"abstract":"<div><div>The escalating plastic pollution crisis necessitates sustainable alternatives, and one promising solution involves replacing petroleum-based polymers with fibrous proteins. This study focused on the recombinant production of intracellular fibrous proteins, specifically <em>Caenorhabditis elegans</em> lamin (Ce-lamin). Ce-lamins spontaneously organize within the cell nucleus, forming a network of nanofilaments. This intricate structure serves as an active layer that responds dynamically to mechanical strain and stress. Herein, we investigated the arrangement of nanofilaments into nanofibrils within wet-spun Ce-lamin fibers using alcoholic solutions as coagulants. Our goal was to understand their structural and mechanical properties, particularly in comparison with those produced with solutions containing Ca<sup>+2</sup> ions, which typically result in the formation of nanofibrils with a collagen-like pattern. The introduction of ethanol solutions significantly altered this pattern, likely through rearrangement of the nanofilaments. Nevertheless, the resulting fibers exhibited superior toughness and strain, outperforming various synthetic fibers. The significance of the nanofilament structure in enhancing fiber toughness was emphasized through both the secondary structure transition during stretching and the influence of the Q159K point mutation. This study improves our understanding of the structural and mechanical aspects of Ce-lamin fibers, paving the way for the development of eco-friendly and high-quality fibers suitable for various applications, including medical implants and composite materials.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"160 ","pages":"Article 106748"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616124003801","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The escalating plastic pollution crisis necessitates sustainable alternatives, and one promising solution involves replacing petroleum-based polymers with fibrous proteins. This study focused on the recombinant production of intracellular fibrous proteins, specifically Caenorhabditis elegans lamin (Ce-lamin). Ce-lamins spontaneously organize within the cell nucleus, forming a network of nanofilaments. This intricate structure serves as an active layer that responds dynamically to mechanical strain and stress. Herein, we investigated the arrangement of nanofilaments into nanofibrils within wet-spun Ce-lamin fibers using alcoholic solutions as coagulants. Our goal was to understand their structural and mechanical properties, particularly in comparison with those produced with solutions containing Ca+2 ions, which typically result in the formation of nanofibrils with a collagen-like pattern. The introduction of ethanol solutions significantly altered this pattern, likely through rearrangement of the nanofilaments. Nevertheless, the resulting fibers exhibited superior toughness and strain, outperforming various synthetic fibers. The significance of the nanofilament structure in enhancing fiber toughness was emphasized through both the secondary structure transition during stretching and the influence of the Q159K point mutation. This study improves our understanding of the structural and mechanical aspects of Ce-lamin fibers, paving the way for the development of eco-friendly and high-quality fibers suitable for various applications, including medical implants and composite materials.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.