Viktor Jönsson , Gustavo A. Orozco , Maria Pierantoni , Hector Dejea , Anna Gustafsson , Lorenzo Grassi , Hanna Isaksson
{"title":"Influence of articular cartilage sample geometry on mechanical response and properties using finite element simulation","authors":"Viktor Jönsson , Gustavo A. Orozco , Maria Pierantoni , Hector Dejea , Anna Gustafsson , Lorenzo Grassi , Hanna Isaksson","doi":"10.1016/j.jbiomech.2024.112323","DOIUrl":null,"url":null,"abstract":"<div><div>Mechanical testing of articular cartilage yields highly variable results, posing challenges for tissue characterization. Many factors cause variability, one is sample geometry. Using in-situ phase-contrast enhanced synchrotron micro-tomographs of cartilage samples while tested in unconfined compression (stress relaxation) our group found high variability in the mechanical response. Since all samples originated from a single bovine knee, they were assumed to share mechanical properties. Microscale tomography images showed geometric irregularities in samples that were not accounted for in the often assumed intended cylindrical shape. We aimed to determine the influence of sample shape on mechanical response in unconfined compression and how sample geometry affects identified mechanical properties. Using a parametric FE model incorporating geometric irregularities in a Design of Experiments approach, results were analysed with 2-way ANOVA. Furthermore, a material parameter fitting was done with multiple segmented sample-specific finite element models simultaneously to assess the influence of sample geometry on material parameters. Results revealed that the average inclined sample surface (4°) caused a 15 % decrease in reaction forces compared to the intended cylinder. Fitting multiple sample-specific geometries simultaneously altered material parameters between −70 to +159 % compared to the average model. Strikingly, initial fibril stiffness and permeability increased by 137 % and 159 %, while the root-mean-square error of the fit was reduced by ∼2/3 compared to using parameters from a cylindrical shape model. In conclusion, minor variability in sample geometry affects property characterization and can account for some of the inter-sample variability in the mechanical data for cartilage.</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"176 ","pages":"Article 112323"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929024004019","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Mechanical testing of articular cartilage yields highly variable results, posing challenges for tissue characterization. Many factors cause variability, one is sample geometry. Using in-situ phase-contrast enhanced synchrotron micro-tomographs of cartilage samples while tested in unconfined compression (stress relaxation) our group found high variability in the mechanical response. Since all samples originated from a single bovine knee, they were assumed to share mechanical properties. Microscale tomography images showed geometric irregularities in samples that were not accounted for in the often assumed intended cylindrical shape. We aimed to determine the influence of sample shape on mechanical response in unconfined compression and how sample geometry affects identified mechanical properties. Using a parametric FE model incorporating geometric irregularities in a Design of Experiments approach, results were analysed with 2-way ANOVA. Furthermore, a material parameter fitting was done with multiple segmented sample-specific finite element models simultaneously to assess the influence of sample geometry on material parameters. Results revealed that the average inclined sample surface (4°) caused a 15 % decrease in reaction forces compared to the intended cylinder. Fitting multiple sample-specific geometries simultaneously altered material parameters between −70 to +159 % compared to the average model. Strikingly, initial fibril stiffness and permeability increased by 137 % and 159 %, while the root-mean-square error of the fit was reduced by ∼2/3 compared to using parameters from a cylindrical shape model. In conclusion, minor variability in sample geometry affects property characterization and can account for some of the inter-sample variability in the mechanical data for cartilage.
期刊介绍:
The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership.
Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to:
-Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells.
-Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions.
-Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response.
-Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing.
-Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine.
-Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction.
-Molecular Biomechanics - Mechanical analyses of biomolecules.
-Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints.
-Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics.
-Sports Biomechanics - Mechanical analyses of sports performance.