{"title":"Fatigue fracture mechanism and life assessment for irregular film cooling hole structures in Ni-based single crystal turbine blades","authors":"","doi":"10.1016/j.engfracmech.2024.110506","DOIUrl":null,"url":null,"abstract":"<div><div>Film cooling holes are the main cooling structures in nickel-based single-crystal cooling turbine blades. To evaluate the low-cycle fatigue life of irregular gas film holes, nine types of Ni-based single-crystal flat-plate test pieces with irregular film cooling holes of different shapes were designed in this study. Fatigue tests were performed at high temperature (850 ℃) and the multiscale fracture mechanisms of the samples analyzed in detail. The stress–strain field around the irregular film cooling holes was analyzed based on crystal plasticity theory using the finite element method. Three life prediction models based on the Coffin–Manson–Basquin formula, maximum principal strain, and crystal plasticity theory were proposed to predict the fatigue life of irregular film-cooled pore structures. The predicted results are all within the double-error band.</div></div>","PeriodicalId":11576,"journal":{"name":"Engineering Fracture Mechanics","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013794424006696","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Film cooling holes are the main cooling structures in nickel-based single-crystal cooling turbine blades. To evaluate the low-cycle fatigue life of irregular gas film holes, nine types of Ni-based single-crystal flat-plate test pieces with irregular film cooling holes of different shapes were designed in this study. Fatigue tests were performed at high temperature (850 ℃) and the multiscale fracture mechanisms of the samples analyzed in detail. The stress–strain field around the irregular film cooling holes was analyzed based on crystal plasticity theory using the finite element method. Three life prediction models based on the Coffin–Manson–Basquin formula, maximum principal strain, and crystal plasticity theory were proposed to predict the fatigue life of irregular film-cooled pore structures. The predicted results are all within the double-error band.
期刊介绍:
EFM covers a broad range of topics in fracture mechanics to be of interest and use to both researchers and practitioners. Contributions are welcome which address the fracture behavior of conventional engineering material systems as well as newly emerging material systems. Contributions on developments in the areas of mechanics and materials science strongly related to fracture mechanics are also welcome. Papers on fatigue are welcome if they treat the fatigue process using the methods of fracture mechanics.