Jianbo Shao , Xi Xi , Guilin Liu , Guofeng Yang , Weifu Dong , Guoqing Chen , Meilin Peng , Qiqi Wang , Meiling Zhang , Meixian Huang , Zhipeng Liu
{"title":"Study on the mechanism of advanced pre-degradation on hydrogenation of multi-crystalline silicon solar cells","authors":"Jianbo Shao , Xi Xi , Guilin Liu , Guofeng Yang , Weifu Dong , Guoqing Chen , Meilin Peng , Qiqi Wang , Meiling Zhang , Meixian Huang , Zhipeng Liu","doi":"10.1016/j.solmat.2024.113187","DOIUrl":null,"url":null,"abstract":"<div><div>The electrical performance of monocrystalline silicon solar cells was significantly improved under hydrogenation alone with appropriate conditions, while the similar improvements of multi-crystalline silicon (mc-Si) solar cells were relatively slight. In this paper, an advanced pre-degradation (Adv.Pre-Deg) was introduced to improve the hydrogenation effect and enhance the performance of mc-Si solar cells. Meanwhile, further studies were conducted on the influence mechanism of Adv.Pre-Deg on subsequent hydrogenation, and some microscopic detection was applied to characterize the effect of Adv.Pre-Deg on the following hydrogenation. The results indicated that Adv.Pre-Deg only slightly influenced the crystallinity, dangling bonds, and defects within the surface dielectric layer, which illustrated that Adv.Pre-Deg hardly harmed the dielectric layer. Then, Raman imaging demonstrated that Adv.Pre-Deg displayed primary assistance in stimulating impurities or defects in silicon bulk in advance. According to the detection of the Si-H bond, we also concluded that the effective performance improvement on mc-Si silicon solar cells through Adv.Pre-Deg & hydrogenation was due to the pre-activation of impurities or defects by Adv.Pre-Deg. Moreover, Adv.Pre-Deg enhanced the passivation effect of hydrogenation on interstitial <span><math><mrow><msubsup><mtext>Fe</mtext><mi>i</mi><mo>+</mo></msubsup></mrow></math></span> from 30.3%<sub>rel.</sub> to 89.1%<sub>rel.</sub> and dislocation defects from 21.92%<sub>rel.</sub> to 46.18%<sub>rel.</sub>, doubling the improvement of bulk passivation on mc-Si. Therefore, the method of combining Adv.Pre-Deg with hydrogenation aims to be applied to other types of solar cells and focus on improving performance and suppressing various degradations, such as TOPCon and HJT.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"278 ","pages":"Article 113187"},"PeriodicalIF":6.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824004999","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The electrical performance of monocrystalline silicon solar cells was significantly improved under hydrogenation alone with appropriate conditions, while the similar improvements of multi-crystalline silicon (mc-Si) solar cells were relatively slight. In this paper, an advanced pre-degradation (Adv.Pre-Deg) was introduced to improve the hydrogenation effect and enhance the performance of mc-Si solar cells. Meanwhile, further studies were conducted on the influence mechanism of Adv.Pre-Deg on subsequent hydrogenation, and some microscopic detection was applied to characterize the effect of Adv.Pre-Deg on the following hydrogenation. The results indicated that Adv.Pre-Deg only slightly influenced the crystallinity, dangling bonds, and defects within the surface dielectric layer, which illustrated that Adv.Pre-Deg hardly harmed the dielectric layer. Then, Raman imaging demonstrated that Adv.Pre-Deg displayed primary assistance in stimulating impurities or defects in silicon bulk in advance. According to the detection of the Si-H bond, we also concluded that the effective performance improvement on mc-Si silicon solar cells through Adv.Pre-Deg & hydrogenation was due to the pre-activation of impurities or defects by Adv.Pre-Deg. Moreover, Adv.Pre-Deg enhanced the passivation effect of hydrogenation on interstitial from 30.3%rel. to 89.1%rel. and dislocation defects from 21.92%rel. to 46.18%rel., doubling the improvement of bulk passivation on mc-Si. Therefore, the method of combining Adv.Pre-Deg with hydrogenation aims to be applied to other types of solar cells and focus on improving performance and suppressing various degradations, such as TOPCon and HJT.
期刊介绍:
Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.