A weak Galerkin finite element method for fourth-order parabolic singularly perturbed problems on layer adapted Shishkin mesh

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Aayushman Raina, Srinivasan Natesan
{"title":"A weak Galerkin finite element method for fourth-order parabolic singularly perturbed problems on layer adapted Shishkin mesh","authors":"Aayushman Raina,&nbsp;Srinivasan Natesan","doi":"10.1016/j.apnum.2024.09.019","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose a weak Galerkin finite element approximation for a class of fourth-order singularly perturbed parabolic problems. The problem exhibits boundary layers and so we have considered layer adapted triangulations, in particular Shishkin triangular mesh in the spatial domain. For temporal discretization, we utilize the Crank-Nicolson scheme on a uniform mesh. Stability and error estimates along with the uniform convergence of the method has been proved. Numerical examples are included which verifies our analysis.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a weak Galerkin finite element approximation for a class of fourth-order singularly perturbed parabolic problems. The problem exhibits boundary layers and so we have considered layer adapted triangulations, in particular Shishkin triangular mesh in the spatial domain. For temporal discretization, we utilize the Crank-Nicolson scheme on a uniform mesh. Stability and error estimates along with the uniform convergence of the method has been proved. Numerical examples are included which verifies our analysis.
层适配 Shishkin 网格上四阶抛物线奇异扰动问题的弱 Galerkin 有限元方法
本文针对一类四阶奇异扰动抛物线问题提出了一种弱 Galerkin 有限元近似方法。该问题具有边界层,因此我们考虑了与层相适应的三角网格,特别是空间域的 Shishkin 三角网格。在时间离散化方面,我们采用了均匀网格上的 Crank-Nicolson 方案。我们已经证明了该方法的稳定性、误差估计值以及均匀收敛性。其中的数值示例验证了我们的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信