A. Bari Jahed , Ömer Aydan , Takashi Ito , Naoki Iwata
{"title":"Evaluation of crustal deformation and associated strong motions induced by the 2022 Paktika earthquake, Afghanistan","authors":"A. Bari Jahed , Ömer Aydan , Takashi Ito , Naoki Iwata","doi":"10.1016/j.eqs.2024.07.001","DOIUrl":null,"url":null,"abstract":"<div><div>The 2022 Paktika earthquake (moment magnitude: 6.2) occurred on June 22, 2022, near the border between the Khost and Paktika Provinces of Afghanistan, causing heavy damage and casualties in Paktika Province. This study evaluated the crustal deformation and associated strong motions induced by the Paktika earthquake. Crustal deformations were determined using the Differential Interferometric Synthetic Aperture Radar (DInSAR) technique and three-dimensional finite element method (3D-FEM) and the results were compared. The permanent ground displacements obtained from the DInSAR and 3D-FEM analyses were similar in terms of amplitude and areal distribution. Strong motions were estimated using the 3D-FEM with and without considering regional topography. The estimations of maximum ground acceleration, velocity, and permanent ground deformations were compared among each other as well as with those inferred from failures of some simple structures in the Spera and Gayan districts. The inferred maximum ground acceleration and velocity from the failed adobe structures were more than 300 Gal and 50 cm/s, respectively, nearly consistent with the estimates obtained using empirical methods. The empirical method yielded a maximum ground acceleration of 347 Gal, whereas the maximum ground velocity was approximately 50 cm/s. In light of these findings, some surface expressions of crustal deformations and strong ground motions, such as failures of soil and rock slopes and rockfalls, have been presented. The rock slope failures in the epicentral area were consistent with those observed during various earthquakes in Afghanistan and worldwide.</div></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"37 6","pages":"Pages 546-557"},"PeriodicalIF":1.2000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S167445192400079X","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
The 2022 Paktika earthquake (moment magnitude: 6.2) occurred on June 22, 2022, near the border between the Khost and Paktika Provinces of Afghanistan, causing heavy damage and casualties in Paktika Province. This study evaluated the crustal deformation and associated strong motions induced by the Paktika earthquake. Crustal deformations were determined using the Differential Interferometric Synthetic Aperture Radar (DInSAR) technique and three-dimensional finite element method (3D-FEM) and the results were compared. The permanent ground displacements obtained from the DInSAR and 3D-FEM analyses were similar in terms of amplitude and areal distribution. Strong motions were estimated using the 3D-FEM with and without considering regional topography. The estimations of maximum ground acceleration, velocity, and permanent ground deformations were compared among each other as well as with those inferred from failures of some simple structures in the Spera and Gayan districts. The inferred maximum ground acceleration and velocity from the failed adobe structures were more than 300 Gal and 50 cm/s, respectively, nearly consistent with the estimates obtained using empirical methods. The empirical method yielded a maximum ground acceleration of 347 Gal, whereas the maximum ground velocity was approximately 50 cm/s. In light of these findings, some surface expressions of crustal deformations and strong ground motions, such as failures of soil and rock slopes and rockfalls, have been presented. The rock slope failures in the epicentral area were consistent with those observed during various earthquakes in Afghanistan and worldwide.
期刊介绍:
Earthquake Science (EQS) aims to publish high-quality, original, peer-reviewed articles on earthquake-related research subjects. It is an English international journal sponsored by the Seismological Society of China and the Institute of Geophysics, China Earthquake Administration.
The topics include, but not limited to, the following
● Seismic sources of all kinds.
● Earth structure at all scales.
● Seismotectonics.
● New methods and theoretical seismology.
● Strong ground motion.
● Seismic phenomena of all kinds.
● Seismic hazards, earthquake forecasting and prediction.
● Seismic instrumentation.
● Significant recent or past seismic events.
● Documentation of recent seismic events or important observations.
● Descriptions of field deployments, new methods, and available software tools.
The types of manuscripts include the following. There is no length requirement, except for the Short Notes.
【Articles】 Original contributions that have not been published elsewhere.
【Short Notes】 Short papers of recent events or topics that warrant rapid peer reviews and publications. Limited to 4 publication pages.
【Rapid Communications】 Significant contributions that warrant rapid peer reviews and publications.
【Review Articles】Review articles are by invitation only. Please contact the editorial office and editors for possible proposals.
【Toolboxes】 Descriptions of novel numerical methods and associated computer codes.
【Data Products】 Documentation of datasets of various kinds that are interested to the community and available for open access (field data, processed data, synthetic data, or models).
【Opinions】Views on important topics and future directions in earthquake science.
【Comments and Replies】Commentaries on a recently published EQS paper is welcome. The authors of the paper commented will be invited to reply. Both the Comment and the Reply are subject to peer review.