Efficient spectral element method for the Euler equations on unbounded domains

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yassine Tissaoui , James F. Kelly , Simone Marras
{"title":"Efficient spectral element method for the Euler equations on unbounded domains","authors":"Yassine Tissaoui ,&nbsp;James F. Kelly ,&nbsp;Simone Marras","doi":"10.1016/j.amc.2024.129080","DOIUrl":null,"url":null,"abstract":"<div><div>Mitigating the impact of waves leaving a numerical domain has been a persistent challenge in numerical modeling. Reducing wave reflection at the domain boundary is crucial for accurate simulations. Absorbing layers, while common, often incur significant computational costs. This paper introduces an efficient application of a Legendre-Laguerre basis for absorbing layers for two-dimensional non-linear compressible Euler equations. The method couples a spectral-element bounded domain with a semi-infinite region, employing a tensor product of Lagrange and scaled Laguerre basis functions. Semi-infinite elements are used in the absorbing layer with Rayleigh damping. In comparison to existing methods with similar absorbing layer extensions, this approach, a pioneering application to the Euler equations of compressible and stratified flows, demonstrates substantial computational savings. The study marks the first application of semi-infinite elements to mitigate wave reflection in the solution of the Euler equations, particularly in nonhydrostatic atmospheric modeling. A comprehensive set of tests demonstrates the method's versatility for general systems of conservation laws, with a focus on its effectiveness in damping vertically propagating mountain gravity waves, a benchmark for atmospheric models. Across all tests, the model presented in this paper consistently exhibits notable performance improvements compared to a traditional Rayleigh damping approach.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005411","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Mitigating the impact of waves leaving a numerical domain has been a persistent challenge in numerical modeling. Reducing wave reflection at the domain boundary is crucial for accurate simulations. Absorbing layers, while common, often incur significant computational costs. This paper introduces an efficient application of a Legendre-Laguerre basis for absorbing layers for two-dimensional non-linear compressible Euler equations. The method couples a spectral-element bounded domain with a semi-infinite region, employing a tensor product of Lagrange and scaled Laguerre basis functions. Semi-infinite elements are used in the absorbing layer with Rayleigh damping. In comparison to existing methods with similar absorbing layer extensions, this approach, a pioneering application to the Euler equations of compressible and stratified flows, demonstrates substantial computational savings. The study marks the first application of semi-infinite elements to mitigate wave reflection in the solution of the Euler equations, particularly in nonhydrostatic atmospheric modeling. A comprehensive set of tests demonstrates the method's versatility for general systems of conservation laws, with a focus on its effectiveness in damping vertically propagating mountain gravity waves, a benchmark for atmospheric models. Across all tests, the model presented in this paper consistently exhibits notable performance improvements compared to a traditional Rayleigh damping approach.
无界域上欧拉方程的高效谱元法
减轻波浪离开数值域的影响一直是数值建模中的一个难题。减少波在域边界的反射对精确模拟至关重要。吸收层虽然常见,但往往会产生大量计算成本。本文介绍了一种针对二维非线性可压缩欧拉方程吸收层的 Legendre-Laguerre 基的高效应用。该方法采用拉格朗日和缩放拉盖尔基函数的张量乘积,将谱元有界域与半无限域结合起来。半无限元素用于具有瑞利阻尼的吸收层。与采用类似吸收层扩展的现有方法相比,这种方法是对可压缩和分层流欧拉方程的开创性应用,大大节省了计算量。这项研究标志着在欧拉方程求解过程中,特别是在非静水压大气建模中,首次应用半无限元素来减少波反射。一组全面的测试证明了该方法在一般守恒定律系统中的通用性,重点是其在阻尼垂直传播的山地重力波(大气模型的基准)中的有效性。在所有测试中,与传统的瑞利阻尼方法相比,本文介绍的模型始终表现出显著的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信