{"title":"Numerical analysis of small-strain elasto-plastic deformation using local Radial Basis Function approximation with Picard iteration","authors":"Filip Strniša, Mitja Jančič, Gregor Kosec","doi":"10.1016/j.apm.2024.115714","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we discuss a von Mises plasticity model with nonlinear isotropic hardening assuming small strains in a plane strain example of internally pressurised thick-walled cylinder subjected to different loading conditions. The elastic deformation is modelled using the Navier-Cauchy equation. In regions where the von Mises stress exceeds the yield stress, corrections are made locally through a return mapping algorithm. We present a novel method that uses a Radial Basis Function-Finite Difference (RBF-FD) approach with Picard iteration to solve the system of nonlinear equations arising from plastic deformation. This technique eliminates the need to stabilise the divergence operator and avoids special positioning of the boundary nodes, while preserving the elegance of the meshless discretisation and avoiding the introduction of new parameters that would require tuning. The results of the proposed method are compared with analytical and Finite Element Method (FEM) solutions. The results show that the proposed method achieves comparable accuracy to FEM while offering significant advantages in the treatment of complex geometries without the need for conventional meshing or special treatment of boundary nodes or differential operators.</div></div>","PeriodicalId":50980,"journal":{"name":"Applied Mathematical Modelling","volume":"137 ","pages":"Article 115714"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Modelling","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0307904X24004670","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we discuss a von Mises plasticity model with nonlinear isotropic hardening assuming small strains in a plane strain example of internally pressurised thick-walled cylinder subjected to different loading conditions. The elastic deformation is modelled using the Navier-Cauchy equation. In regions where the von Mises stress exceeds the yield stress, corrections are made locally through a return mapping algorithm. We present a novel method that uses a Radial Basis Function-Finite Difference (RBF-FD) approach with Picard iteration to solve the system of nonlinear equations arising from plastic deformation. This technique eliminates the need to stabilise the divergence operator and avoids special positioning of the boundary nodes, while preserving the elegance of the meshless discretisation and avoiding the introduction of new parameters that would require tuning. The results of the proposed method are compared with analytical and Finite Element Method (FEM) solutions. The results show that the proposed method achieves comparable accuracy to FEM while offering significant advantages in the treatment of complex geometries without the need for conventional meshing or special treatment of boundary nodes or differential operators.
期刊介绍:
Applied Mathematical Modelling focuses on research related to the mathematical modelling of engineering and environmental processes, manufacturing, and industrial systems. A significant emerging area of research activity involves multiphysics processes, and contributions in this area are particularly encouraged.
This influential publication covers a wide spectrum of subjects including heat transfer, fluid mechanics, CFD, and transport phenomena; solid mechanics and mechanics of metals; electromagnets and MHD; reliability modelling and system optimization; finite volume, finite element, and boundary element procedures; modelling of inventory, industrial, manufacturing and logistics systems for viable decision making; civil engineering systems and structures; mineral and energy resources; relevant software engineering issues associated with CAD and CAE; and materials and metallurgical engineering.
Applied Mathematical Modelling is primarily interested in papers developing increased insights into real-world problems through novel mathematical modelling, novel applications or a combination of these. Papers employing existing numerical techniques must demonstrate sufficient novelty in the solution of practical problems. Papers on fuzzy logic in decision-making or purely financial mathematics are normally not considered. Research on fractional differential equations, bifurcation, and numerical methods needs to include practical examples. Population dynamics must solve realistic scenarios. Papers in the area of logistics and business modelling should demonstrate meaningful managerial insight. Submissions with no real-world application will not be considered.