{"title":"Anti-cancer activity and optoelectronic properties via DFT calculations of rare-earth dually doped wurtzite-type ZnO nano-systems","authors":"Yassine Slimani , Serkan Caliskan , Firdos A. Khan , Abdulhadi Baykal","doi":"10.1016/j.nanoso.2024.101348","DOIUrl":null,"url":null,"abstract":"<div><div>The application of zinc oxide (ZnO) in the biomedical field and electronic devices is attributed to its physical and chemical properties. In this research, a comprehensive investigation was performed to explore the role of Eu and Dy dual-doping on the electronic structure, optical characteristics, and anti-cancer capability of ZnO. The structural analysis using the XRD experiment demonstrated the formation of a wurtzite hexagonal structured ZnO phase for the undoped sample. The crystal structure was maintained but with a slight distortion of the system with the co-doping effect. The crystallite size disclosed a reduction with increasing the co-doping concentration. TEM and EDX analysis proved the formation of the desired compositions. In the theoretical part, the density functional theory (DFT) is adopted to probe the electronic structure and optical characteristics of proposed samples. The band gap energy (E<sub>g</sub>) of undoped ZnO is found to be 3.45 eV. For the dual-doped systems, the E<sub>g</sub> values reduced progressively as the content of co-dopants increased. A prominent absorption peak revealed in the UV regime for the undoped ZnO is shifted to lower energies upon doping, implying the band gap reduction. DFT results demonstrate that the impurity states due to rare earth dopants are important for optic/electronic characteristics and can be harnessed to develop photoelectric devices. According to the anti-cancer in vitro analysis, the prepared nanoparticles show strong cytotoxicity against HeLa and HCT-116 cells. The cell viability for colon cancer HCT-116 cells was C0 (37.18 %), C1 (31.96 %), C2 (64.27 %) and C3 (58.12 %), and the cell viability for cervical cancer HeLa cells was C0 (39.05 %), C1 (42.30 %), C2 (57.68 %), and C3 (45.29 %). Furthermore, DAPI staining indicated that the treatment with the Eu and Dy dual-doped ZnO NPs produced a cancer apoptotic cell death. The results of this work will be useful for further examination and choosing the appropriate nanomaterials for the targeted fields of applications.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101348"},"PeriodicalIF":5.4500,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X24002609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The application of zinc oxide (ZnO) in the biomedical field and electronic devices is attributed to its physical and chemical properties. In this research, a comprehensive investigation was performed to explore the role of Eu and Dy dual-doping on the electronic structure, optical characteristics, and anti-cancer capability of ZnO. The structural analysis using the XRD experiment demonstrated the formation of a wurtzite hexagonal structured ZnO phase for the undoped sample. The crystal structure was maintained but with a slight distortion of the system with the co-doping effect. The crystallite size disclosed a reduction with increasing the co-doping concentration. TEM and EDX analysis proved the formation of the desired compositions. In the theoretical part, the density functional theory (DFT) is adopted to probe the electronic structure and optical characteristics of proposed samples. The band gap energy (Eg) of undoped ZnO is found to be 3.45 eV. For the dual-doped systems, the Eg values reduced progressively as the content of co-dopants increased. A prominent absorption peak revealed in the UV regime for the undoped ZnO is shifted to lower energies upon doping, implying the band gap reduction. DFT results demonstrate that the impurity states due to rare earth dopants are important for optic/electronic characteristics and can be harnessed to develop photoelectric devices. According to the anti-cancer in vitro analysis, the prepared nanoparticles show strong cytotoxicity against HeLa and HCT-116 cells. The cell viability for colon cancer HCT-116 cells was C0 (37.18 %), C1 (31.96 %), C2 (64.27 %) and C3 (58.12 %), and the cell viability for cervical cancer HeLa cells was C0 (39.05 %), C1 (42.30 %), C2 (57.68 %), and C3 (45.29 %). Furthermore, DAPI staining indicated that the treatment with the Eu and Dy dual-doped ZnO NPs produced a cancer apoptotic cell death. The results of this work will be useful for further examination and choosing the appropriate nanomaterials for the targeted fields of applications.
期刊介绍:
Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .