Fading regularization method for an inverse boundary value problem associated with the biharmonic equation

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Mohamed Aziz Boukraa , Laëtitia Caillé , Franck Delvare
{"title":"Fading regularization method for an inverse boundary value problem associated with the biharmonic equation","authors":"Mohamed Aziz Boukraa ,&nbsp;Laëtitia Caillé ,&nbsp;Franck Delvare","doi":"10.1016/j.cam.2024.116285","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose a numerical algorithm that combines the fading regularization method with the method of fundamental solutions (MFS) to solve a Cauchy problem associated with the biharmonic equation. We introduce a new stopping criterion for the iterative process and compare its performance with previous criteria. Numerical simulations using MFS validate the accuracy of this stopping criterion for both compatible and noisy data and demonstrate the convergence, stability, and efficiency of the proposed algorithm, as well as its ability to deblur noisy data.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a numerical algorithm that combines the fading regularization method with the method of fundamental solutions (MFS) to solve a Cauchy problem associated with the biharmonic equation. We introduce a new stopping criterion for the iterative process and compare its performance with previous criteria. Numerical simulations using MFS validate the accuracy of this stopping criterion for both compatible and noisy data and demonstrate the convergence, stability, and efficiency of the proposed algorithm, as well as its ability to deblur noisy data.
与双谐方程相关的反边界值问题的消隐正则化方法
在本文中,我们提出了一种结合消隐正则化方法和基本解法(MFS)的数值算法,用于解决与双谐波方程相关的柯西问题。我们为迭代过程引入了一个新的停止准则,并将其性能与之前的准则进行了比较。使用 MFS 进行的数值模拟验证了这一停止准则对于兼容数据和噪声数据的准确性,并证明了所提算法的收敛性、稳定性和效率,以及其消除噪声数据的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信