The hierarchical structure of organic mixed ionic–electronic conductors and its evolution in water

IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yael Tsarfati, Karen C. Bustillo, Benjamin H. Savitzky, Luke Balhorn, Tyler J. Quill, Adam Marks, Jennifer Donohue, Steven E. Zeltmann, Christopher J. Takacs, Alexander Giovannitti, Iain McCulloch, Colin Ophus, Andrew M. Minor, Alberto Salleo
{"title":"The hierarchical structure of organic mixed ionic–electronic conductors and its evolution in water","authors":"Yael Tsarfati, Karen C. Bustillo, Benjamin H. Savitzky, Luke Balhorn, Tyler J. Quill, Adam Marks, Jennifer Donohue, Steven E. Zeltmann, Christopher J. Takacs, Alexander Giovannitti, Iain McCulloch, Colin Ophus, Andrew M. Minor, Alberto Salleo","doi":"10.1038/s41563-024-02016-6","DOIUrl":null,"url":null,"abstract":"<p>Polymeric organic mixed ionic–electronic conductors underpin several technologies in which their electrochemical properties are desirable. These properties, however, depend on the microstructure that develops in their aqueous operational environment. We investigated the structure of a model organic mixed ionic–electronic conductor across multiple length scales using cryogenic four-dimensional scanning transmission electron microscopy in both its dry and hydrated states. Four-dimensional scanning transmission electron microscopy allows us to identify the prevalent defects in the polymer crystalline regions and to analyse the liquid crystalline nature of the polymer. The orientation maps of the dry and hydrated polymers show that swelling-induced disorder is mostly localized in discrete regions, thereby largely preserving the liquid crystalline order. Therefore, the liquid crystalline mesostructure makes electronic transport robust to electrolyte ingress. This study demonstrates that cryogenic four-dimensional scanning transmission electron microscopy provides multiscale structural insights into complex, hierarchical structures such as polymeric organic mixed ionic–electronic conductors, even in their hydrated operating state.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"11 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-024-02016-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Polymeric organic mixed ionic–electronic conductors underpin several technologies in which their electrochemical properties are desirable. These properties, however, depend on the microstructure that develops in their aqueous operational environment. We investigated the structure of a model organic mixed ionic–electronic conductor across multiple length scales using cryogenic four-dimensional scanning transmission electron microscopy in both its dry and hydrated states. Four-dimensional scanning transmission electron microscopy allows us to identify the prevalent defects in the polymer crystalline regions and to analyse the liquid crystalline nature of the polymer. The orientation maps of the dry and hydrated polymers show that swelling-induced disorder is mostly localized in discrete regions, thereby largely preserving the liquid crystalline order. Therefore, the liquid crystalline mesostructure makes electronic transport robust to electrolyte ingress. This study demonstrates that cryogenic four-dimensional scanning transmission electron microscopy provides multiscale structural insights into complex, hierarchical structures such as polymeric organic mixed ionic–electronic conductors, even in their hydrated operating state.

Abstract Image

有机离子电子混合导体的分层结构及其在水中的演化
聚合有机离子电子混合导体是多种技术的基础,其电化学特性是这些技术所需要的。然而,这些特性取决于它们在水性工作环境中形成的微观结构。我们利用低温四维扫描透射电子显微镜研究了一种有机离子电子混合导体模型在干燥和水合状态下的多长度尺度结构。通过四维扫描透射电子显微镜,我们可以确定聚合物结晶区域的普遍缺陷,并分析聚合物的液晶性质。干聚合物和水合聚合物的取向图显示,膨胀引起的无序主要集中在离散区域,从而在很大程度上保持了液晶秩序。因此,液晶介观结构使电子传输不受电解质侵入的影响。这项研究表明,低温四维扫描透射电子显微镜可提供多尺度结构洞察,以了解复杂的分层结构,如聚合物有机混合离子电子导体,即使在其水合工作状态下也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Materials
Nature Materials 工程技术-材料科学:综合
CiteScore
62.20
自引率
0.70%
发文量
221
审稿时长
3.2 months
期刊介绍: Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology. Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines. Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信