Xianguang Ding, JingJing Zhang, Shuangshuang Wan, Xu Wang, Zhiyu Wang, Kefeng Pu, Mao Wang, Yi Cao, Lixing Weng, Houjuan Zhu, Fei Peng, Jie Chao, Renjun Pei, David Tai Leong, Lianhui Wang
{"title":"Non-discriminating engineered masking of immuno-evasive ligands on tumour-derived extracellular vesicles enhances tumour vaccination outcomes","authors":"Xianguang Ding, JingJing Zhang, Shuangshuang Wan, Xu Wang, Zhiyu Wang, Kefeng Pu, Mao Wang, Yi Cao, Lixing Weng, Houjuan Zhu, Fei Peng, Jie Chao, Renjun Pei, David Tai Leong, Lianhui Wang","doi":"10.1038/s41565-024-01783-2","DOIUrl":null,"url":null,"abstract":"<p>The success of personalized cancer immunotherapy depends on the initial tumour antigenic presentation to dendritic cells and macrophages. Tumour-derived extracellular vesicles (TEVs) contain abundant tumour antigenic molecules. The presence of anti-phagocytotic signals such as cluster of differentiation 47 (CD47) on the surface of the TEVs, however, leads to evasion of the same dendritic cells and macrophages. Here we show that iron oxide hydroxide nanocomposites can successfully mask TEV surfaces and unblock phagocytosis without affecting extracellular vesicles’ elicited immune goals. After internalization, the mask disintegrates in the lysosome, releasing the tumour antigenic cargo. This triggers antigen presentation and promotes dendritic cell activation and maturation and macrophage reprogramming in animal models, leading to a drastic reduction of tumour volume and metastasis, and in human malignant pleural effusion clinical samples. This straightforward masking strategy eliminates the ubiquitous anti-phagocytosis block found in clinical samples and can be applied universally across all patient-specific TEVs as tumour antigenic agents for enhanced immunotherapy.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":null,"pages":null},"PeriodicalIF":38.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-024-01783-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The success of personalized cancer immunotherapy depends on the initial tumour antigenic presentation to dendritic cells and macrophages. Tumour-derived extracellular vesicles (TEVs) contain abundant tumour antigenic molecules. The presence of anti-phagocytotic signals such as cluster of differentiation 47 (CD47) on the surface of the TEVs, however, leads to evasion of the same dendritic cells and macrophages. Here we show that iron oxide hydroxide nanocomposites can successfully mask TEV surfaces and unblock phagocytosis without affecting extracellular vesicles’ elicited immune goals. After internalization, the mask disintegrates in the lysosome, releasing the tumour antigenic cargo. This triggers antigen presentation and promotes dendritic cell activation and maturation and macrophage reprogramming in animal models, leading to a drastic reduction of tumour volume and metastasis, and in human malignant pleural effusion clinical samples. This straightforward masking strategy eliminates the ubiquitous anti-phagocytosis block found in clinical samples and can be applied universally across all patient-specific TEVs as tumour antigenic agents for enhanced immunotherapy.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.