{"title":"Innovating Lubrication with Polyelectrolyte Hydrogels: Sustained Performance Through Lipid Dynamics","authors":"Zhongrui Wang, Panpan Li, Benyou Li, Shenghao Yang, Ting Zhao, Yuwen Meng, Qiang Li, Jingcheng Hao, Xu Wang","doi":"10.1002/adfm.202413712","DOIUrl":null,"url":null,"abstract":"<p>The lubrication process of natural joint cartilage involves a series of coordinated mechanisms, a key aspect of which is its ability to continuously extract lubricating components from synovial fluid to achieve sustained lubrication. Inspired by this natural phenomenon, this study reports a novel polyelectrolyte hydrogel, specifically integrating ε-poly-L-lysine (ε-PL), adeptly captures lipids from environment to achieve effective lubrication similar to human joints. The ε-PL within the hydrogel facilitates the dynamic sequestration of lipids, fostering interfacial self-assembly. This setup, enriched with highly hydrated lipid head groups, enhances boundary lubrication capabilities for extended performance. Through rigorous evaluation of friction coefficients and supramolecular interactions between the hydrogel and lipids, it identified hydrogen bonding, charge-dipole, and hydrophobic interactions as key to this self-assembly. The findings affirm the versatility of polyelectrolytes in synthesizing lubricating hydrogels, bridging the gap to the creation of biomimetic hydrogels that mimic natural lubrication with enhanced durability and efficiency.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 3","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202413712","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The lubrication process of natural joint cartilage involves a series of coordinated mechanisms, a key aspect of which is its ability to continuously extract lubricating components from synovial fluid to achieve sustained lubrication. Inspired by this natural phenomenon, this study reports a novel polyelectrolyte hydrogel, specifically integrating ε-poly-L-lysine (ε-PL), adeptly captures lipids from environment to achieve effective lubrication similar to human joints. The ε-PL within the hydrogel facilitates the dynamic sequestration of lipids, fostering interfacial self-assembly. This setup, enriched with highly hydrated lipid head groups, enhances boundary lubrication capabilities for extended performance. Through rigorous evaluation of friction coefficients and supramolecular interactions between the hydrogel and lipids, it identified hydrogen bonding, charge-dipole, and hydrophobic interactions as key to this self-assembly. The findings affirm the versatility of polyelectrolytes in synthesizing lubricating hydrogels, bridging the gap to the creation of biomimetic hydrogels that mimic natural lubrication with enhanced durability and efficiency.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.