{"title":"From West to East: Professor Pavlos Savvidis’ Quest for Light","authors":"Ji Wang","doi":"10.1038/s41377-024-01616-w","DOIUrl":null,"url":null,"abstract":"<p>As early as about 2400 years ago, Mozi (original name Mo Di, Latinized as Micius), an ancient Chinese scientist, proposed the theory of pinhole imaging that demonstrates the fundamental principle of light behavior. About 700 years ago, Marco Polo, an Italian explorer, traveled to China along the Silk Road, marveled at the economic prosperity and the advanced technology of Hangzhou City in China, and described Hangzhou as “the most beautiful and splendid city in the world”. About 5 years ago, with the support of the China-proposed Belt-and-Road Initiative, it was in Hangzhou City that Professor Pavlos Savvidis, an Armenian-born Greek physicist, chose to work with more of his Chinese counterparts and took on the challenge of building a new research laboratory on quantum optoelectronics. He used to study and work in the UK, the USA, and Greece, but now in New China’s first new type of research university supported by the society—Westlake University. Traveling from West to East, traversing from one civilization to another, Professor Pavlos Savvidis delves into his unwavering quest for light in this issue of “Light People”, and discusses his tireless pursuit of excellence in the field of optoelectronics, which has garnered him widespread citation, recognition, and contribution to the global scientific community.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"6 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Medicinal Chemistry Letters","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01616-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
As early as about 2400 years ago, Mozi (original name Mo Di, Latinized as Micius), an ancient Chinese scientist, proposed the theory of pinhole imaging that demonstrates the fundamental principle of light behavior. About 700 years ago, Marco Polo, an Italian explorer, traveled to China along the Silk Road, marveled at the economic prosperity and the advanced technology of Hangzhou City in China, and described Hangzhou as “the most beautiful and splendid city in the world”. About 5 years ago, with the support of the China-proposed Belt-and-Road Initiative, it was in Hangzhou City that Professor Pavlos Savvidis, an Armenian-born Greek physicist, chose to work with more of his Chinese counterparts and took on the challenge of building a new research laboratory on quantum optoelectronics. He used to study and work in the UK, the USA, and Greece, but now in New China’s first new type of research university supported by the society—Westlake University. Traveling from West to East, traversing from one civilization to another, Professor Pavlos Savvidis delves into his unwavering quest for light in this issue of “Light People”, and discusses his tireless pursuit of excellence in the field of optoelectronics, which has garnered him widespread citation, recognition, and contribution to the global scientific community.
期刊介绍:
ACS Medicinal Chemistry Letters is interested in receiving manuscripts that discuss various aspects of medicinal chemistry. The journal will publish studies that pertain to a broad range of subject matter, including compound design and optimization, biological evaluation, drug delivery, imaging agents, and pharmacology of both small and large bioactive molecules. Specific areas include but are not limited to:
Identification, synthesis, and optimization of lead biologically active molecules and drugs (small molecules and biologics)
Biological characterization of new molecular entities in the context of drug discovery
Computational, cheminformatics, and structural studies for the identification or SAR analysis of bioactive molecules, ligands and their targets, etc.
Novel and improved methodologies, including radiation biochemistry, with broad application to medicinal chemistry
Discovery technologies for biologically active molecules from both synthetic and natural (plant and other) sources
Pharmacokinetic/pharmacodynamic studies that address mechanisms underlying drug disposition and response
Pharmacogenetic and pharmacogenomic studies used to enhance drug design and the translation of medicinal chemistry into the clinic
Mechanistic drug metabolism and regulation of metabolic enzyme gene expression
Chemistry patents relevant to the medicinal chemistry field.