{"title":"A material change for ultra-high precision force sensing","authors":"Christopher Perrella, Kishan Dholakia","doi":"10.1038/s41377-024-01626-8","DOIUrl":null,"url":null,"abstract":"<p>An original form of photonic force microscope has been developed. Operating with a trapped lanthanide-doped crystal of nanometric dimensions, a minimum detected force of the order of 110 aN and a force sensitivity down to 1.8 fN/<span>\\(\\sqrt{{\\rm{Hz}}}\\)</span> have been realised. This opens up new prospects for force sensing in the physical sciences.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"29 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01626-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
An original form of photonic force microscope has been developed. Operating with a trapped lanthanide-doped crystal of nanometric dimensions, a minimum detected force of the order of 110 aN and a force sensitivity down to 1.8 fN/\(\sqrt{{\rm{Hz}}}\) have been realised. This opens up new prospects for force sensing in the physical sciences.