Modeling primary microcephaly with human brain organoids reveals fundamental roles of CIT kinase activity.

Gianmarco Pallavicini,Amanda Moccia,Giorgia Iegiani,Roberta Parolisi,Emily R Peirent,Gaia Elena Berto,Martina Lorenzati,Rami Y Tshuva,Alessia Ferraro,Fiorella Balzac,Emilia Turco,Shachi U Salvi,Hedvig F Myklebust,Sophia Wang,Julia Eisenberg,Maushmi Chitale,Navjit S Girgla,Enrica Boda,Orly Reiner,Annalisa Buffo,Ferdinando Di Cunto,Stephanie L Bielas
{"title":"Modeling primary microcephaly with human brain organoids reveals fundamental roles of CIT kinase activity.","authors":"Gianmarco Pallavicini,Amanda Moccia,Giorgia Iegiani,Roberta Parolisi,Emily R Peirent,Gaia Elena Berto,Martina Lorenzati,Rami Y Tshuva,Alessia Ferraro,Fiorella Balzac,Emilia Turco,Shachi U Salvi,Hedvig F Myklebust,Sophia Wang,Julia Eisenberg,Maushmi Chitale,Navjit S Girgla,Enrica Boda,Orly Reiner,Annalisa Buffo,Ferdinando Di Cunto,Stephanie L Bielas","doi":"10.1172/jci175435","DOIUrl":null,"url":null,"abstract":"Brain size and cellular heterogeneity are tightly regulated by species-specific proliferation and differentiation of multipotent neural progenitor cells (NPCs). Errors in this process are among the mechanisms of primary hereditary microcephaly (MCPH), a group of disorders characterized by reduced brain size and intellectual disability. Biallelic CIT missense variants that disrupt kinase function (CITKI/KI) and frameshift loss-of-function variants (CITFS/FS) are the genetic basis for MCPH17; however, the function of CIT catalytic activity in brain development and NPC cytokinesis is unknown. Therefore, we created the CitKI/KI mouse model and found that it does not phenocopy human microcephaly, unlike biallelic CitFS/FS animals. Nevertheless, both Cit models exhibited binucleation, DNA damage, and apoptosis. To investigate human-specific mechanisms of CIT microcephaly, we generated CITKI/KI and CITFS/FS human forebrain organoids. We found that CITKI/KI and CITFS/FS organoids lose cytoarchitectural complexity, transitioning from pseudostratified to simple neuroepithelium. This change was associated with defects that disrupt polarity of NPC cytokinesis, in addition to elevating apoptosis. Together, our results indicate that both CIT catalytic and scaffolding functions in NPC cytokinesis are critical for human corticogenesis. Species differences in corticogenesis and the dynamic 3D features of NPC mitosis underscore the utility of human forebrain organoid models for understanding human microcephaly.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Clinical Investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1172/jci175435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Brain size and cellular heterogeneity are tightly regulated by species-specific proliferation and differentiation of multipotent neural progenitor cells (NPCs). Errors in this process are among the mechanisms of primary hereditary microcephaly (MCPH), a group of disorders characterized by reduced brain size and intellectual disability. Biallelic CIT missense variants that disrupt kinase function (CITKI/KI) and frameshift loss-of-function variants (CITFS/FS) are the genetic basis for MCPH17; however, the function of CIT catalytic activity in brain development and NPC cytokinesis is unknown. Therefore, we created the CitKI/KI mouse model and found that it does not phenocopy human microcephaly, unlike biallelic CitFS/FS animals. Nevertheless, both Cit models exhibited binucleation, DNA damage, and apoptosis. To investigate human-specific mechanisms of CIT microcephaly, we generated CITKI/KI and CITFS/FS human forebrain organoids. We found that CITKI/KI and CITFS/FS organoids lose cytoarchitectural complexity, transitioning from pseudostratified to simple neuroepithelium. This change was associated with defects that disrupt polarity of NPC cytokinesis, in addition to elevating apoptosis. Together, our results indicate that both CIT catalytic and scaffolding functions in NPC cytokinesis are critical for human corticogenesis. Species differences in corticogenesis and the dynamic 3D features of NPC mitosis underscore the utility of human forebrain organoid models for understanding human microcephaly.
用人脑器官模拟原发性小头畸形揭示 CIT 激酶活性的基本作用
大脑的大小和细胞的异质性受到多能神经祖细胞(NPC)物种特异性增殖和分化的严格调控。这一过程中的错误是原发性遗传性小头畸形(MCPH)的发病机制之一,MCPH 是一组以脑尺寸缩小和智力障碍为特征的疾病。破坏激酶功能的双叶 CIT 错义变体(CITKI/KI)和框移功能缺失变体(CITFS/FS)是 MCPH17 的遗传基础;然而,CIT 催化活性在大脑发育和 NPC 细胞分裂中的功能尚不清楚。因此,我们创建了 CitKI/KI 小鼠模型,并发现它与双倍拷贝的 CitFS/FS 动物不同,不会表现出人类小头畸形。然而,两种 Cit 模型都表现出双核、DNA 损伤和细胞凋亡。为了研究 CIT 小头畸形的人类特异性机制,我们生成了 CITKI/KI 和 CITFS/FS 人类前脑器官组织。我们发现,CITKI/KI 和 CITFS/FS 器官组织失去了细胞结构的复杂性,从假增生过渡到简单的神经上皮。这种变化除了与细胞凋亡增加有关外,还与破坏 NPC 细胞分裂极性的缺陷有关。我们的研究结果表明,CIT 在 NPC 细胞发生过程中的催化和支架功能对人类皮质的发生至关重要。皮质发生的物种差异和NPC有丝分裂的动态三维特征凸显了人类前脑类器官模型在了解人类小头畸形方面的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信