In Pursuit of Healthier Learning Environments: High-Altitude Classroom Ventilation

IF 4.3 2区 环境科学与生态学 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Indoor air Pub Date : 2024-09-25 DOI:10.1155/2024/2205311
Carlos Avila, Paola Tapia, Ricardo Vallejo, Alvaro Avila, Edgar Rivera
{"title":"In Pursuit of Healthier Learning Environments: High-Altitude Classroom Ventilation","authors":"Carlos Avila,&nbsp;Paola Tapia,&nbsp;Ricardo Vallejo,&nbsp;Alvaro Avila,&nbsp;Edgar Rivera","doi":"10.1155/2024/2205311","DOIUrl":null,"url":null,"abstract":"<p>This study addresses the critical issue of indoor air quality (IAQ) and pathogen transmission within enclosed spaces at high altitudes, focusing on university classrooms in Quito, an Andean city in South America. The aim is to establish safety thresholds for room occupancy and permissible durations of exposure, tailored to this unique environmental context. Through an experimental approach conducted at an elevation of 2900 m above sea level, various natural ventilation strategies were evaluated for their efficacy in mitigating pathogen transmission risks. The study employs the Concentration Decay Test Method to characterize air changes per hour (ACH) and utilizes the Bazant mathematical model to predict occupancy levels based on ventilation, dimensions of the room, respiratory activity, infectiousness rates, and other parameters. Findings highlight the significant impact of ventilation strategies on room occupancy. Notably, higher infectiousness rates and large exposure times drastically reduce permissible occupancy levels, underscoring the importance of effective ventilation in maintaining safety. This research contributes valuable insights for informed decision-making regarding classroom capacity and safety protocols in Andean higher education settings.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2205311","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor air","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/2205311","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses the critical issue of indoor air quality (IAQ) and pathogen transmission within enclosed spaces at high altitudes, focusing on university classrooms in Quito, an Andean city in South America. The aim is to establish safety thresholds for room occupancy and permissible durations of exposure, tailored to this unique environmental context. Through an experimental approach conducted at an elevation of 2900 m above sea level, various natural ventilation strategies were evaluated for their efficacy in mitigating pathogen transmission risks. The study employs the Concentration Decay Test Method to characterize air changes per hour (ACH) and utilizes the Bazant mathematical model to predict occupancy levels based on ventilation, dimensions of the room, respiratory activity, infectiousness rates, and other parameters. Findings highlight the significant impact of ventilation strategies on room occupancy. Notably, higher infectiousness rates and large exposure times drastically reduce permissible occupancy levels, underscoring the importance of effective ventilation in maintaining safety. This research contributes valuable insights for informed decision-making regarding classroom capacity and safety protocols in Andean higher education settings.

Abstract Image

追求更健康的学习环境:高空教室通风
本研究以南美洲安第斯城市基多的大学教室为重点,探讨了高海拔封闭空间内的室内空气质量(IAQ)和病原体传播这一关键问题。其目的是根据这一独特的环境背景,确定室内占用的安全阈值和允许的接触时间。通过在海拔 2900 米的地方进行实验,对各种自然通风策略在降低病原体传播风险方面的效果进行了评估。研究采用浓度衰减测试法来描述每小时换气次数(ACH),并利用巴赞数学模型根据通风、房间尺寸、呼吸活动、感染率和其他参数来预测入住率。研究结果凸显了通风策略对房间占用率的重要影响。值得注意的是,较高的感染率和较长的暴露时间会大大降低允许的占用率,从而强调了有效通风对维护安全的重要性。这项研究为安第斯地区高等教育机构在教室容量和安全协议方面做出明智决策提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Indoor air
Indoor air 环境科学-工程:环境
CiteScore
10.80
自引率
10.30%
发文量
175
审稿时长
3 months
期刊介绍: The quality of the environment within buildings is a topic of major importance for public health. Indoor Air provides a location for reporting original research results in the broad area defined by the indoor environment of non-industrial buildings. An international journal with multidisciplinary content, Indoor Air publishes papers reflecting the broad categories of interest in this field: health effects; thermal comfort; monitoring and modelling; source characterization; ventilation and other environmental control techniques. The research results present the basic information to allow designers, building owners, and operators to provide a healthy and comfortable environment for building occupants, as well as giving medical practitioners information on how to deal with illnesses related to the indoor environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信