Boundedness for the chemotaxis system with logistic growth

IF 2.4 2区 数学 Q1 MATHEMATICS
Qian Zhang , Yonghong Wu , Peiguang Wang
{"title":"Boundedness for the chemotaxis system with logistic growth","authors":"Qian Zhang ,&nbsp;Yonghong Wu ,&nbsp;Peiguang Wang","doi":"10.1016/j.jde.2024.09.040","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider a mathematical model motivated by the studies of coral broadcast spawning<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>n</mi><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>n</mi><mo>−</mo><mi>Δ</mi><mi>n</mi></mtd><mtd><mo>=</mo><mo>−</mo><mi>χ</mi><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>n</mi><mi>∇</mi><mi>c</mi><mo>)</mo><mo>+</mo><mi>n</mi><mo>−</mo><mi>ϵ</mi><msup><mrow><mi>n</mi></mrow><mrow><mi>q</mi></mrow></msup></mtd></mtr><mtr><mtd><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>c</mi><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>c</mi><mo>−</mo><mi>Δ</mi><mi>c</mi></mtd><mtd><mo>=</mo><mo>−</mo><mi>c</mi><mo>+</mo><mi>n</mi></mtd></mtr></mtable></mrow><mspace></mspace><mtext> in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo></mrow></math></span></span></span> where <span><math><mi>d</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn></math></span>, <span><math><mi>ϵ</mi><mo>&gt;</mo><mn>0</mn></math></span>, and <span><math><mi>q</mi><mo>≥</mo><mn>2</mn></math></span>. We establish global-in-time well-posedness and boundedness of the solution to the Cauchy problem of this system by developing local-in-space estimates. The crux point of our proof depends intensely on localization in the space of solutions induced by “local effect” of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>-norm.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006259","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider a mathematical model motivated by the studies of coral broadcast spawning{tn+unΔn=χ(nc)+nϵnqtc+ucΔc=c+n in Rd×R+, where d=2,3, ϵ>0, and q2. We establish global-in-time well-posedness and boundedness of the solution to the Cauchy problem of this system by developing local-in-space estimates. The crux point of our proof depends intensely on localization in the space of solutions induced by “local effect” of the L(Rd)-norm.
具有逻辑增长的趋化系统的有界性
在本文中,我们考虑了一个由珊瑚广播产卵研究激发的数学模型{∂tn+u⋅∇n-Δn=-χ∇⋅(n∇c)+n-ϵnq∂tc+u⋅∇c-Δc=-c+n in Rd×R+,其中 d=2,3,ϵ>0,q≥2。我们通过建立局部空间估计,建立了该系统的考希问题解的全局时间拟合性和有界性。我们证明的关键点主要取决于 L∞(Rd)-norm 的 "局部效应 "所引起的解空间的局部性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信