Spectral instability of peakons for the b-family of Novikov equations

IF 2.4 2区 数学 Q1 MATHEMATICS
Xijun Deng , Stéphane Lafortune
{"title":"Spectral instability of peakons for the b-family of Novikov equations","authors":"Xijun Deng ,&nbsp;Stéphane Lafortune","doi":"10.1016/j.jde.2024.09.031","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we are concerned with a one-parameter family of peakon equations with cubic nonlinearity parametrized by a parameter usually denoted by the letter <em>b</em>. This family is called the “<em>b</em>-Novikov” since it reduces to the integrable Novikov equation in the case <span><math><mi>b</mi><mo>=</mo><mn>3</mn></math></span>. By extending the corresponding linearized operator defined on functions in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> to one defined on weaker functions on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>, we prove spectral and linear instability on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> of peakons in the <em>b</em>-Novikov equations for any <em>b</em>. We also consider the stability on <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> and show that the peakons are spectrally or linearly stable only in the case <span><math><mi>b</mi><mo>=</mo><mn>3</mn></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002203962400617X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we are concerned with a one-parameter family of peakon equations with cubic nonlinearity parametrized by a parameter usually denoted by the letter b. This family is called the “b-Novikov” since it reduces to the integrable Novikov equation in the case b=3. By extending the corresponding linearized operator defined on functions in H1(R) to one defined on weaker functions on L2(R), we prove spectral and linear instability on L2(R) of peakons in the b-Novikov equations for any b. We also consider the stability on H1(R) and show that the peakons are spectrally or linearly stable only in the case b=3.
诺维科夫方程 b 族的峰子谱不稳定性
在本文中,我们关注的是具有立方非线性参数的峰值子方程的一参数族,其参数通常用字母 b 表示。这个族被称为 "b-Novikov",因为它在 b=3 的情况下简化为可积分的 Novikov 方程。通过将定义在 H1(R) 中函数上的相应线性化算子扩展到定义在 L2(R) 上较弱函数上的算子,我们证明了 b-Novikov 方程中任何 b 的峰值子在 L2(R) 上的谱和线性不稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信