Gas hydrate stability for CO2-methane gas mixes in the Pegasus B asin, New Zealand: A geological control for potential gas production using methane-CO2 exchange in hydrates

0 ENERGY & FUELS
Ingo A. Pecher , Karsten F. Kroeger , Gareth J. Crutchley , Michael T. Macnaughtan
{"title":"Gas hydrate stability for CO2-methane gas mixes in the Pegasus B asin, New Zealand: A geological control for potential gas production using methane-CO2 exchange in hydrates","authors":"Ingo A. Pecher ,&nbsp;Karsten F. Kroeger ,&nbsp;Gareth J. Crutchley ,&nbsp;Michael T. Macnaughtan","doi":"10.1016/j.jgsce.2024.205456","DOIUrl":null,"url":null,"abstract":"<div><div>Gas hydrate is an ice-like form of water containing gas, in nature mostly methane (CH<sub>4</sub>), which requires moderate pressures and low temperatures. The replacement of CH<sub>4</sub> by CO<sub>2</sub>, which also forms a hydrate, could allow CH<sub>4</sub> production from hydrate while sequestering CO<sub>2</sub>. A number of recent studies have focused on theoretical background, experimental simulations, and engineering approaches related to CH<sub>4</sub>-CO<sub>2</sub> exchange in hydrates. We here investigate a key geologic constraint for possible CH<sub>4</sub>-CO<sub>2</sub> exchange in sub-seafloor reservoirs, hydrate stability. We analyze seismic data and gas hydrate system models from the Pegasus Basin east of New Zealand, a region with evidence for abundant gas hydrates. Pressure-temperature conditions beneath the seafloor need to be within the stability fields for both CH<sub>4</sub> hydrate and hydrate from the resulting gas mix after CO<sub>2</sub> injection. Based on experimental and theoretical studies, we consider 64% a benchmark for maximum achievable CH<sub>4</sub> replacement by CO<sub>2</sub>, resulting in a mix of 64% CO<sub>2</sub> – 36% CH<sub>4</sub>, in hydrate. Down to a water depth of 1087 m, hydrate from this gas mix is stable within the entire CH<sub>4</sub> hydrate stability field. A gap develops in deeper water with the base of gas hydrate stability (BGHS) for CH<sub>4</sub> being deeper than for the 64% CO<sub>2</sub> – 36% CH<sub>4</sub> mix. In nature, most mechanisms for CH<sub>4</sub> hydrate formation favor high saturation near the BGHS. For an evaluation of possible CH<sub>4</sub>-CO<sub>2</sub> exchange, it is therefore important to investigate mixed-gas hydrate stability near the CH<sub>4</sub>-BGHS and to identify CH<sub>4</sub> hydrates closer to the seafloor.</div></div>","PeriodicalId":100568,"journal":{"name":"Gas Science and Engineering","volume":"131 ","pages":"Article 205456"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gas Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949908924002528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Gas hydrate is an ice-like form of water containing gas, in nature mostly methane (CH4), which requires moderate pressures and low temperatures. The replacement of CH4 by CO2, which also forms a hydrate, could allow CH4 production from hydrate while sequestering CO2. A number of recent studies have focused on theoretical background, experimental simulations, and engineering approaches related to CH4-CO2 exchange in hydrates. We here investigate a key geologic constraint for possible CH4-CO2 exchange in sub-seafloor reservoirs, hydrate stability. We analyze seismic data and gas hydrate system models from the Pegasus Basin east of New Zealand, a region with evidence for abundant gas hydrates. Pressure-temperature conditions beneath the seafloor need to be within the stability fields for both CH4 hydrate and hydrate from the resulting gas mix after CO2 injection. Based on experimental and theoretical studies, we consider 64% a benchmark for maximum achievable CH4 replacement by CO2, resulting in a mix of 64% CO2 – 36% CH4, in hydrate. Down to a water depth of 1087 m, hydrate from this gas mix is stable within the entire CH4 hydrate stability field. A gap develops in deeper water with the base of gas hydrate stability (BGHS) for CH4 being deeper than for the 64% CO2 – 36% CH4 mix. In nature, most mechanisms for CH4 hydrate formation favor high saturation near the BGHS. For an evaluation of possible CH4-CO2 exchange, it is therefore important to investigate mixed-gas hydrate stability near the CH4-BGHS and to identify CH4 hydrates closer to the seafloor.
新西兰 Pegasus B asin 的二氧化碳-甲烷混合气体水合物稳定性:利用水合物中的甲烷-二氧化碳交换进行潜在天然气生产的地质控制
天然气水合物是一种含有气体的冰状水体,在自然界中主要是甲烷(CH4),需要中等压力和低温。二氧化碳也会形成水合物,用二氧化碳替代 CH4 可以在封存二氧化碳的同时从水合物中产生 CH4。最近的一些研究集中于水合物中 CH4-CO2 交换的相关理论背景、实验模拟和工程方法。我们在此研究海底下储层中可能发生的 CH4-CO2 交换的一个关键地质制约因素,即水合物的稳定性。我们分析了新西兰东部飞马座盆地的地震数据和天然气水合物系统模型,该地区有证据表明存在丰富的天然气水合物。注入二氧化碳后,海底下的压力-温度条件必须在 CH4 水合物和由此产生的混合气体水合物的稳定区域内。根据实验和理论研究,我们认为二氧化碳对 CH4 的最大替代率为 64%,水合物中的混合气体为 64% CO2 - 36% CH4。在水深 1087 米以下,这种混合气体产生的水合物在整个 CH4 水合物稳定区域内都是稳定的。在更深的水域会出现差距,CH4 的气体水合物稳定基(BGHS)比 64% CO2 - 36% CH4 混合气体的水合物稳定基更深。在自然界中,大多数 CH4 水合物形成机制都倾向于在 BGHS 附近达到高饱和度。因此,为了评估可能的 CH4-CO2 交换,必须研究 CH4-BGHS 附近的混合气体水合物稳定性,并确定更靠近海底的 CH4 水合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信