Shijun Wang , Yunhe Zheng , Yanyao Gao , Jiangchuan He , Feng Lv , Yizhuo Bu , Kailai Liu , Yuchen Zhang , Jinpeng Wen , Lei Wang , Ke Wang , Xiqian Zhang
{"title":"In situ crosslinked injectable chondroitin sulfate hydrogel for preventing postoperative adhesion","authors":"Shijun Wang , Yunhe Zheng , Yanyao Gao , Jiangchuan He , Feng Lv , Yizhuo Bu , Kailai Liu , Yuchen Zhang , Jinpeng Wen , Lei Wang , Ke Wang , Xiqian Zhang","doi":"10.1016/j.biopha.2024.117495","DOIUrl":null,"url":null,"abstract":"<div><div>Postoperative adhesion is a common clinical disease caused by surgical trauma, accompanying serious subsequent complications. Current non-surgical drug therapy and biomaterial barrier administration have limited therapeutic effects due to their inherent deficiencies. Therefore, developing a simple, effective, and feasible method to effectively prevent postoperative adhesions after surgical procedures remains a challenge. An injectable chondroitin sulfate complex hydrogel was prepared based on aldehyde-modified chondroitin sulfate (ChS-CHO) and hydrazine-modified chondroitin sulfate (ChS-ADH). The hydrogel showed enhanced strength and good self-healing ability. By using the Schiff base reaction principle that aldehyde group reacts with hydrazide to form hydrazone bond, C-A hydrogel physical barrier is formed at the wound site to reduce the occurrence of postoperative adhesion. There is no use of chemical crosslinkers in the whole reaction system to prepare C-A hydrogel, which has excellent biocompatibility and is safe and non-toxic. The results showed that C-A hydrogel showed excellent mechanical properties, good self-healing, and biocompatibility. The cecal-abdominal wall adhesion model and hepatic adhesion model of rats were constructed respectively to evaluate its preventive effect on postoperative adhesion. The results showed that C-A hydrogel had a more significant preventive effect on postoperative adhesion, and appears to be a promising candidate for postoperative adhesion.</div></div>","PeriodicalId":8966,"journal":{"name":"Biomedicine & Pharmacotherapy","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & Pharmacotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0753332224013817","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Postoperative adhesion is a common clinical disease caused by surgical trauma, accompanying serious subsequent complications. Current non-surgical drug therapy and biomaterial barrier administration have limited therapeutic effects due to their inherent deficiencies. Therefore, developing a simple, effective, and feasible method to effectively prevent postoperative adhesions after surgical procedures remains a challenge. An injectable chondroitin sulfate complex hydrogel was prepared based on aldehyde-modified chondroitin sulfate (ChS-CHO) and hydrazine-modified chondroitin sulfate (ChS-ADH). The hydrogel showed enhanced strength and good self-healing ability. By using the Schiff base reaction principle that aldehyde group reacts with hydrazide to form hydrazone bond, C-A hydrogel physical barrier is formed at the wound site to reduce the occurrence of postoperative adhesion. There is no use of chemical crosslinkers in the whole reaction system to prepare C-A hydrogel, which has excellent biocompatibility and is safe and non-toxic. The results showed that C-A hydrogel showed excellent mechanical properties, good self-healing, and biocompatibility. The cecal-abdominal wall adhesion model and hepatic adhesion model of rats were constructed respectively to evaluate its preventive effect on postoperative adhesion. The results showed that C-A hydrogel had a more significant preventive effect on postoperative adhesion, and appears to be a promising candidate for postoperative adhesion.
期刊介绍:
Biomedicine & Pharmacotherapy stands as a multidisciplinary journal, presenting a spectrum of original research reports, reviews, and communications in the realms of clinical and basic medicine, as well as pharmacology. The journal spans various fields, including Cancer, Nutriceutics, Neurodegenerative, Cardiac, and Infectious Diseases.