{"title":"On power monoids and their automorphisms","authors":"Salvatore Tringali, Weihao Yan","doi":"10.1016/j.jcta.2024.105961","DOIUrl":null,"url":null,"abstract":"<div><div>Endowed with the binary operation of set addition, the family <span><math><msub><mrow><mi>P</mi></mrow><mrow><mrow><mi>fin</mi></mrow><mo>,</mo><mn>0</mn></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo></math></span> of all finite subsets of <span><math><mi>N</mi></math></span> containing 0 forms a monoid, with the singleton {0} as its neutral element.</div><div>We show that the only non-trivial automorphism of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mrow><mi>fin</mi></mrow><mo>,</mo><mn>0</mn></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo></math></span> is the involution <span><math><mi>X</mi><mo>↦</mo><mi>max</mi><mo></mo><mi>X</mi><mo>−</mo><mi>X</mi></math></span>. The proof leverages ideas from additive number theory and proceeds through an unconventional induction on what we call the boxing dimension of a finite set of integers, that is, the smallest number of (discrete) intervals whose union is the set itself.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"209 ","pages":"Article 105961"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524001006","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Endowed with the binary operation of set addition, the family of all finite subsets of containing 0 forms a monoid, with the singleton {0} as its neutral element.
We show that the only non-trivial automorphism of is the involution . The proof leverages ideas from additive number theory and proceeds through an unconventional induction on what we call the boxing dimension of a finite set of integers, that is, the smallest number of (discrete) intervals whose union is the set itself.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.