Stock price prediction using combined GARCH-AI models

IF 2.7 Q2 MULTIDISCIPLINARY SCIENCES
John Kamwele Mutinda, Amos Kipkorir Langat
{"title":"Stock price prediction using combined GARCH-AI models","authors":"John Kamwele Mutinda,&nbsp;Amos Kipkorir Langat","doi":"10.1016/j.sciaf.2024.e02374","DOIUrl":null,"url":null,"abstract":"<div><div>The non-linear and non-stationary nature of financial time series data poses significant challenges for standalone statistical and neural network methods. While predictive modeling in finance often focuses on volatility, there is a notable lack of research on predicting actual stock prices, particularly in the African market. This study addresses this gap by utilizing Airtel stock data from Yahoo Finance, spanning June 28, 2019, to May 8, 2024. The research employs the GARCH model to extract statistical properties, which are then combined with historical prices and fed into LSTM, GRU, and Transformer models leading to GARCH-LSTM, GARCH-GRU, GARCH-Transfomer hybrid models. These hybrid models are benchmarked against standalone LSTM, GRU and Transfomer models using RMSE, MAE, MAPE, and R-squared metrics. Results indicate that hybrid models, especially GARCH-LSTM, significantly outperform standalone models. This integration of GARCH with advanced AI models offers a more robust framework for stock price prediction, enhancing accuracy and reliability in forecasting future prices.</div></div>","PeriodicalId":21690,"journal":{"name":"Scientific African","volume":"26 ","pages":"Article e02374"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific African","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468227624003168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The non-linear and non-stationary nature of financial time series data poses significant challenges for standalone statistical and neural network methods. While predictive modeling in finance often focuses on volatility, there is a notable lack of research on predicting actual stock prices, particularly in the African market. This study addresses this gap by utilizing Airtel stock data from Yahoo Finance, spanning June 28, 2019, to May 8, 2024. The research employs the GARCH model to extract statistical properties, which are then combined with historical prices and fed into LSTM, GRU, and Transformer models leading to GARCH-LSTM, GARCH-GRU, GARCH-Transfomer hybrid models. These hybrid models are benchmarked against standalone LSTM, GRU and Transfomer models using RMSE, MAE, MAPE, and R-squared metrics. Results indicate that hybrid models, especially GARCH-LSTM, significantly outperform standalone models. This integration of GARCH with advanced AI models offers a more robust framework for stock price prediction, enhancing accuracy and reliability in forecasting future prices.
使用 GARCH-AI 组合模型预测股价
金融时间序列数据的非线性和非平稳性给独立的统计和神经网络方法带来了巨大挑战。虽然金融领域的预测建模通常侧重于波动性,但对实际股票价格的预测研究却明显不足,尤其是在非洲市场。本研究利用雅虎财经提供的 Airtel 股票数据(时间跨度为 2019 年 6 月 28 日至 2024 年 5 月 8 日)填补了这一空白。研究采用 GARCH 模型提取统计属性,然后将其与历史价格相结合,并输入 LSTM、GRU 和 Transformer 模型,最终形成 GARCH-LSTM、GARCH-GRU、GARCH-Transfomer 混合模型。使用 RMSE、MAE、MAPE 和 R 平方指标对这些混合模型与独立的 LSTM、GRU 和 Transfomer 模型进行了基准测试。结果表明,混合模型,尤其是 GARCH-LSTM 明显优于独立模型。GARCH 与先进人工智能模型的整合为股票价格预测提供了一个更稳健的框架,提高了预测未来价格的准确性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific African
Scientific African Multidisciplinary-Multidisciplinary
CiteScore
5.60
自引率
3.40%
发文量
332
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信