Decks of rooted binary trees

IF 1 3区 数学 Q1 MATHEMATICS
Ann Clifton , Éva Czabarka , Audace A.V. Dossou-Olory , Kevin Liu , Sarah Loeb , Utku Okur , László Székely , Kristina Wicke
{"title":"Decks of rooted binary trees","authors":"Ann Clifton ,&nbsp;Éva Czabarka ,&nbsp;Audace A.V. Dossou-Olory ,&nbsp;Kevin Liu ,&nbsp;Sarah Loeb ,&nbsp;Utku Okur ,&nbsp;László Székely ,&nbsp;Kristina Wicke","doi":"10.1016/j.ejc.2024.104076","DOIUrl":null,"url":null,"abstract":"<div><div>We consider extremal problems related to decks and multidecks of rooted binary trees (a.k.a. rooted phylogenetic tree shapes). Here, the deck (resp. multideck) of a tree <span><math><mi>T</mi></math></span> refers to the set (resp. multiset) of leaf-induced binary subtrees of <span><math><mi>T</mi></math></span>. On the one hand, we consider the reconstruction of trees from their (multi)decks. We give lower and upper bounds on the minimum (multi)deck size required to uniquely encode a rooted binary tree on <span><math><mi>n</mi></math></span> leaves. On the other hand, we consider problems related to deck cardinalities. In particular, we characterize trees with minimum-size as well as maximum-size decks. Finally, we present some exhaustive computations for <span><math><mi>k</mi></math></span>-universal trees, i.e., rooted binary trees that contain all <span><math><mi>k</mi></math></span>-leaf rooted binary trees as leaf-induced subtrees.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104076"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824001616","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider extremal problems related to decks and multidecks of rooted binary trees (a.k.a. rooted phylogenetic tree shapes). Here, the deck (resp. multideck) of a tree T refers to the set (resp. multiset) of leaf-induced binary subtrees of T. On the one hand, we consider the reconstruction of trees from their (multi)decks. We give lower and upper bounds on the minimum (multi)deck size required to uniquely encode a rooted binary tree on n leaves. On the other hand, we consider problems related to deck cardinalities. In particular, we characterize trees with minimum-size as well as maximum-size decks. Finally, we present some exhaustive computations for k-universal trees, i.e., rooted binary trees that contain all k-leaf rooted binary trees as leaf-induced subtrees.
有根二叉树甲板
我们考虑与有根二叉树(又称有根系统树形)的甲板和多甲板相关的极值问题。在这里,树 T 的甲板(或多甲板)指的是 T 的叶诱导二叉子树的集合(或多集合)。一方面,我们考虑从树的(多)甲板重建树。我们给出了唯一编码 n 个树叶上有根二叉树所需的最小(多)甲板大小的下限和上限。另一方面,我们还考虑了与牌面明度相关的问题。特别是,我们描述了具有最小尺寸和最大尺寸牌面的树的特征。最后,我们介绍了一些 k 通用树的详尽计算,即包含所有 k 叶有根二叉树作为叶诱导子树的有根二叉树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信