Positive multi-bump solutions for the Schrödinger equation with slow decaying competing potentials

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Boling Tang , Hui Guo , Tao Wang
{"title":"Positive multi-bump solutions for the Schrödinger equation with slow decaying competing potentials","authors":"Boling Tang ,&nbsp;Hui Guo ,&nbsp;Tao Wang","doi":"10.1016/j.jmaa.2024.128904","DOIUrl":null,"url":null,"abstract":"<div><div>We are concerned with the existence of multi-bump solutions to the following nonlinear Schrödinger equation with competing potentials <em>V</em> and <em>Q</em>,<span><span><span><math><mrow><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>V</mi><mo>(</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>)</mo><mi>u</mi><mo>=</mo><mi>Q</mi><mo>(</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>)</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>,</mo><mspace></mspace><mi>u</mi><mo>&gt;</mo><mn>0</mn><mspace></mspace><mspace></mspace><mtext>in</mtext><mspace></mspace><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mrow></math></span></span></span> where <span><math><mi>N</mi><mo>≥</mo><mn>3</mn><mo>,</mo><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mfrac><mrow><mi>N</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span>, <em>V</em> and <em>Q</em> are radial functions having the following slow algebraic decay with <span><math><mi>m</mi><mo>,</mo><mi>n</mi><mo>&gt;</mo><mn>0</mn></math></span>,<span><span><span><math><mi>V</mi><mo>(</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>)</mo><mo>=</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>+</mo><mfrac><mrow><mi>a</mi></mrow><mrow><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>m</mi></mrow></msup></mrow></mfrac><mo>+</mo><mi>O</mi><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>m</mi><mo>+</mo><mi>κ</mi></mrow></msup></mrow></mfrac><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mi>Q</mi><mo>(</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>)</mo><mo>=</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>+</mo><mfrac><mrow><mi>b</mi></mrow><mrow><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>n</mi></mrow></msup></mrow></mfrac><mo>+</mo><mi>O</mi><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>n</mi><mo>+</mo><mi>θ</mi></mrow></msup></mrow></mfrac><mo>)</mo></mrow><mrow><mtext> as </mtext><mo>|</mo><mi>x</mi><mo>|</mo><mo>→</mo><mo>∞</mo><mtext>,</mtext></mrow></math></span></span></span> <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>κ</mi><mo>,</mo><mi>θ</mi><mo>,</mo><mi>a</mi><mo>&gt;</mo><mn>0</mn></math></span>. By introducing a weighted norm and some delicate analysis, we construct infinitely many new positive multi-bump solutions for <span><math><mi>m</mi><mo>&lt;</mo><mi>n</mi><mo>,</mo><mi>b</mi><mo>∈</mo><mi>R</mi></math></span> or <span><math><mi>m</mi><mo>≥</mo><mi>n</mi><mo>,</mo><mi>b</mi><mo>≤</mo><mn>0</mn></math></span>. The maximum points of these bump solutions lie on the top and bottom circles of a cylinder near the infinity. This result complements and extends the existence results of multi-bump solutions in <span><span>[2]</span></span>, <span><span>[11]</span></span> from <span><math><mi>m</mi><mo>,</mo><mi>n</mi><mo>&gt;</mo><mn>1</mn></math></span> to the slow decaying potentials case <span><math><mi>m</mi><mo>,</mo><mi>n</mi><mo>&gt;</mo><mn>0</mn></math></span>.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24008266","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We are concerned with the existence of multi-bump solutions to the following nonlinear Schrödinger equation with competing potentials V and Q,Δu+V(|x|)u=Q(|x|)up,u>0inRN, where N3,1<p<N+2N2, V and Q are radial functions having the following slow algebraic decay with m,n>0,V(|x|)=V0+a|x|m+O(1|x|m+κ),Q(|x|)=Q0+b|x|n+O(1|x|n+θ) as |x|, V0,Q0,κ,θ,a>0. By introducing a weighted norm and some delicate analysis, we construct infinitely many new positive multi-bump solutions for m<n,bR or mn,b0. The maximum points of these bump solutions lie on the top and bottom circles of a cylinder near the infinity. This result complements and extends the existence results of multi-bump solutions in [2], [11] from m,n>1 to the slow decaying potentials case m,n>0.
具有慢衰减竞争势的薛定谔方程的正多凸块解
我们关注的是以下非线性薛定谔方程的多凸块解的存在性,该方程具有相互竞争的势V和Q,-Δu+V(|x|)u=Q(|x|)up,u>0inRN,其中N≥3,1<;p<N+2N-2,V 和 Q 是径向函数,随着 m,n>0, V(|x|)=V0+a|x|m+O(1|x|m+κ), Q(|x|)=Q0+b|x|n+O(1|x|n+θ), V0,Q0,κ,θ,a>0 的缓慢代数衰减。通过引入加权规范和一些微妙的分析,我们构造出 m<n,b∈R 或 m≥n,b≤0 的无穷多个新的正多凹凸解。这一结果补充并扩展了 [2], [11] 中从 m,n>1 到 m,n>0 慢衰减势情况下多凹凸解的存在性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信