{"title":"Positive multi-bump solutions for the Schrödinger equation with slow decaying competing potentials","authors":"Boling Tang , Hui Guo , Tao Wang","doi":"10.1016/j.jmaa.2024.128904","DOIUrl":null,"url":null,"abstract":"<div><div>We are concerned with the existence of multi-bump solutions to the following nonlinear Schrödinger equation with competing potentials <em>V</em> and <em>Q</em>,<span><span><span><math><mrow><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>V</mi><mo>(</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>)</mo><mi>u</mi><mo>=</mo><mi>Q</mi><mo>(</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>)</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>,</mo><mspace></mspace><mi>u</mi><mo>></mo><mn>0</mn><mspace></mspace><mspace></mspace><mtext>in</mtext><mspace></mspace><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mrow></math></span></span></span> where <span><math><mi>N</mi><mo>≥</mo><mn>3</mn><mo>,</mo><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mfrac><mrow><mi>N</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span>, <em>V</em> and <em>Q</em> are radial functions having the following slow algebraic decay with <span><math><mi>m</mi><mo>,</mo><mi>n</mi><mo>></mo><mn>0</mn></math></span>,<span><span><span><math><mi>V</mi><mo>(</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>)</mo><mo>=</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>+</mo><mfrac><mrow><mi>a</mi></mrow><mrow><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>m</mi></mrow></msup></mrow></mfrac><mo>+</mo><mi>O</mi><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>m</mi><mo>+</mo><mi>κ</mi></mrow></msup></mrow></mfrac><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mi>Q</mi><mo>(</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>)</mo><mo>=</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>+</mo><mfrac><mrow><mi>b</mi></mrow><mrow><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>n</mi></mrow></msup></mrow></mfrac><mo>+</mo><mi>O</mi><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>n</mi><mo>+</mo><mi>θ</mi></mrow></msup></mrow></mfrac><mo>)</mo></mrow><mrow><mtext> as </mtext><mo>|</mo><mi>x</mi><mo>|</mo><mo>→</mo><mo>∞</mo><mtext>,</mtext></mrow></math></span></span></span> <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>κ</mi><mo>,</mo><mi>θ</mi><mo>,</mo><mi>a</mi><mo>></mo><mn>0</mn></math></span>. By introducing a weighted norm and some delicate analysis, we construct infinitely many new positive multi-bump solutions for <span><math><mi>m</mi><mo><</mo><mi>n</mi><mo>,</mo><mi>b</mi><mo>∈</mo><mi>R</mi></math></span> or <span><math><mi>m</mi><mo>≥</mo><mi>n</mi><mo>,</mo><mi>b</mi><mo>≤</mo><mn>0</mn></math></span>. The maximum points of these bump solutions lie on the top and bottom circles of a cylinder near the infinity. This result complements and extends the existence results of multi-bump solutions in <span><span>[2]</span></span>, <span><span>[11]</span></span> from <span><math><mi>m</mi><mo>,</mo><mi>n</mi><mo>></mo><mn>1</mn></math></span> to the slow decaying potentials case <span><math><mi>m</mi><mo>,</mo><mi>n</mi><mo>></mo><mn>0</mn></math></span>.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24008266","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We are concerned with the existence of multi-bump solutions to the following nonlinear Schrödinger equation with competing potentials V and Q, where , V and Q are radial functions having the following slow algebraic decay with , . By introducing a weighted norm and some delicate analysis, we construct infinitely many new positive multi-bump solutions for or . The maximum points of these bump solutions lie on the top and bottom circles of a cylinder near the infinity. This result complements and extends the existence results of multi-bump solutions in [2], [11] from to the slow decaying potentials case .
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.