A note on kernel functions of Dirichlet spaces

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sahil Gehlawat , Aakanksha Jain , Amar Deep Sarkar
{"title":"A note on kernel functions of Dirichlet spaces","authors":"Sahil Gehlawat ,&nbsp;Aakanksha Jain ,&nbsp;Amar Deep Sarkar","doi":"10.1016/j.jmaa.2024.128897","DOIUrl":null,"url":null,"abstract":"<div><div>For a planar domain Ω, we consider the Dirichlet spaces with respect to a base point <span><math><mi>ζ</mi><mo>∈</mo><mi>Ω</mi></math></span> and the corresponding kernel functions. It is not known how these kernel functions behave as we vary the base point. In this note, we prove that these kernel functions vary smoothly. As an application of the smoothness result, we prove a Ramadanov-type theorem for these kernel functions on <span><math><mi>Ω</mi><mo>×</mo><mi>Ω</mi></math></span>. This extends the previously known convergence results of these kernel functions. In fact, we have made these observations in a more general setting, that is, for weighted kernel functions and their higher-order counterparts.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24008199","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

For a planar domain Ω, we consider the Dirichlet spaces with respect to a base point ζΩ and the corresponding kernel functions. It is not known how these kernel functions behave as we vary the base point. In this note, we prove that these kernel functions vary smoothly. As an application of the smoothness result, we prove a Ramadanov-type theorem for these kernel functions on Ω×Ω. This extends the previously known convergence results of these kernel functions. In fact, we have made these observations in a more general setting, that is, for weighted kernel functions and their higher-order counterparts.
关于 Dirichlet 空间核函数的说明
对于平面域 Ω,我们考虑关于基点 ζ∈Ω 的 Dirichlet 空间和相应的核函数。我们还不知道这些核函数在我们改变基点时是如何表现的。在本说明中,我们将证明这些核函数的变化是平滑的。作为平滑性结果的应用,我们证明了这些核函数在 Ω×Ω 上的拉马丹诺夫型定理。这扩展了之前已知的这些核函数的收敛结果。事实上,我们是在更一般的情况下,即针对加权核函数及其高阶对应函数,得出这些结论的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信