The nanoparticles aggregation aspects on the chemically reactive unsteady flow of alumina-water based nanofluid: A Keller box approach with applications of wavelet physics inspired neural networks

Q1 Mathematics
Sumanta Shagolshem , Chandan K , Malatesh Akkur , Bharti Kumari , Chander Prakash , T.V. Smitha , Naveen Kumar R
{"title":"The nanoparticles aggregation aspects on the chemically reactive unsteady flow of alumina-water based nanofluid: A Keller box approach with applications of wavelet physics inspired neural networks","authors":"Sumanta Shagolshem ,&nbsp;Chandan K ,&nbsp;Malatesh Akkur ,&nbsp;Bharti Kumari ,&nbsp;Chander Prakash ,&nbsp;T.V. Smitha ,&nbsp;Naveen Kumar R","doi":"10.1016/j.padiff.2024.100931","DOIUrl":null,"url":null,"abstract":"<div><div>The present study explores the unsteady flow of a nanoliquid past a stretching cylinder with the consequence of heat source/sink and chemical reaction. Additionally, the effect of nanoparticle aggregation, convective boundary conditions, and magnetic field on the liquid flow is taken into consideration. Utilizing similarity variables, the modeled equations are transformed into dimensionless ordinary differential equations (ODEs). Further, the obtained ODEs are numerically solved by using the Keller box method. Moreover, the physics-informed neural network (PINN) is applied to analyze the flow, heat, and mass transport features. Graphical illustrations are used to display the influence of various parameters on the velocity, concentration, and temperature profiles for aggregation and without aggregation cases. As the value of the magnetic parameter increases, the temperature and concentration profile upsurge, but the reverse trend can be seen in the velocity profile. The concentration and temperature profiles rise as the unsteadiness parameter increases, but the velocity profile declines. The concentration, velocity, and temperature profiles are strengthened by an improvement in the curvature parameter value. The intensification in the values of the chemical reaction parameter declines the concentration.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 100931"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124003176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The present study explores the unsteady flow of a nanoliquid past a stretching cylinder with the consequence of heat source/sink and chemical reaction. Additionally, the effect of nanoparticle aggregation, convective boundary conditions, and magnetic field on the liquid flow is taken into consideration. Utilizing similarity variables, the modeled equations are transformed into dimensionless ordinary differential equations (ODEs). Further, the obtained ODEs are numerically solved by using the Keller box method. Moreover, the physics-informed neural network (PINN) is applied to analyze the flow, heat, and mass transport features. Graphical illustrations are used to display the influence of various parameters on the velocity, concentration, and temperature profiles for aggregation and without aggregation cases. As the value of the magnetic parameter increases, the temperature and concentration profile upsurge, but the reverse trend can be seen in the velocity profile. The concentration and temperature profiles rise as the unsteadiness parameter increases, but the velocity profile declines. The concentration, velocity, and temperature profiles are strengthened by an improvement in the curvature parameter value. The intensification in the values of the chemical reaction parameter declines the concentration.
纳米颗粒聚集对氧化铝-水基纳米流体化学反应不稳定流的影响:应用小波物理学启发神经网络的凯勒盒方法
本研究探讨了纳米液体在热源/沉降和化学反应作用下流经拉伸圆柱体的非稳态流动。此外,还考虑了纳米粒子聚集、对流边界条件和磁场对液体流动的影响。利用相似变量,模型方程被转化为无量纲常微分方程(ODE)。然后,利用凯勒盒方法对得到的 ODE 进行数值求解。此外,还应用物理信息神经网络(PINN)分析流动、热量和质量传输特征。在有聚集和无聚集的情况下,采用图表说明了各种参数对速度、浓度和温度曲线的影响。随着磁性参数值的增加,温度和浓度曲线上升,但速度曲线的趋势相反。随着不稳定性参数的增加,浓度和温度曲线上升,但速度曲线下降。曲率参数值的增加会加强浓度、速度和温度曲线。化学反应参数值的增加会降低浓度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信