Devesh K. Pathak, Chanchal Rani, Aanchal Sati and Rajesh Kumar*,
{"title":"Developments in Raman Spectromicroscopy for Strengthening Materials and Natural Science Research: Shaping the Future of Physical Chemistry","authors":"Devesh K. Pathak, Chanchal Rani, Aanchal Sati and Rajesh Kumar*, ","doi":"10.1021/acsphyschemau.4c0001710.1021/acsphyschemau.4c00017","DOIUrl":null,"url":null,"abstract":"<p >Spectroscopic techniques, especially Raman spectroscopy, cover a large subset in the teaching and research domain of physical chemistry. Raman spectroscopy, and other Raman based techniques, establishes itself as a powerful analytical tool with diverse applications across scientific, industrial, and natural science (including biology and pharmacy) fields and helps in the progress of physical chemistry. Recent advancements and future prospects in Raman spectroscopy, focusing on key areas of innovation and potential directions for research and development, have been highlighted here along with some of the challenges that need to be addressed to prepare Raman based techniques for the future. Significant progress has been made in enhancing the sensitivity, spatial resolution, and time resolution of Raman spectroscopy techniques. Raman spectroscopy has applications in all areas of research but especially in biomedical applications, where Raman spectroscopy holds a great promise for noninvasive or minimally invasive diagnosis, tissue imaging, and drug monitoring. Improvements in instrumentation and laser technologies have enabled researchers to achieve higher sensitivity levels, investigate smaller sample areas with improved spatial resolution, and capture dynamic processes with high temporal resolution. These advancements have paved the way for a deeper understanding of molecular structure, chemical composition, and dynamic behavior in various materials and biological systems. It is high time that we consider whether Raman based techniques are ready to be improved based on the strength of the current era of AI/ML and quantum technology.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.4c00017","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Physical Chemistry Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphyschemau.4c00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Spectroscopic techniques, especially Raman spectroscopy, cover a large subset in the teaching and research domain of physical chemistry. Raman spectroscopy, and other Raman based techniques, establishes itself as a powerful analytical tool with diverse applications across scientific, industrial, and natural science (including biology and pharmacy) fields and helps in the progress of physical chemistry. Recent advancements and future prospects in Raman spectroscopy, focusing on key areas of innovation and potential directions for research and development, have been highlighted here along with some of the challenges that need to be addressed to prepare Raman based techniques for the future. Significant progress has been made in enhancing the sensitivity, spatial resolution, and time resolution of Raman spectroscopy techniques. Raman spectroscopy has applications in all areas of research but especially in biomedical applications, where Raman spectroscopy holds a great promise for noninvasive or minimally invasive diagnosis, tissue imaging, and drug monitoring. Improvements in instrumentation and laser technologies have enabled researchers to achieve higher sensitivity levels, investigate smaller sample areas with improved spatial resolution, and capture dynamic processes with high temporal resolution. These advancements have paved the way for a deeper understanding of molecular structure, chemical composition, and dynamic behavior in various materials and biological systems. It is high time that we consider whether Raman based techniques are ready to be improved based on the strength of the current era of AI/ML and quantum technology.
期刊介绍:
ACS Physical Chemistry Au is an open access journal which publishes original fundamental and applied research on all aspects of physical chemistry. The journal publishes new and original experimental computational and theoretical research of interest to physical chemists biophysical chemists chemical physicists physicists material scientists and engineers. An essential criterion for acceptance is that the manuscript provides new physical insight or develops new tools and methods of general interest. Some major topical areas include:Molecules Clusters and Aerosols; Biophysics Biomaterials Liquids and Soft Matter; Energy Materials and Catalysis