Automated Mixture Analysis via Structural Evaluation

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Zachary T.P. Fried*,  and , Brett A. McGuire*, 
{"title":"Automated Mixture Analysis via Structural Evaluation","authors":"Zachary T.P. Fried*,&nbsp; and ,&nbsp;Brett A. McGuire*,&nbsp;","doi":"10.1021/acs.jpca.4c0358010.1021/acs.jpca.4c03580","DOIUrl":null,"url":null,"abstract":"<p >The determination of chemical mixture components is vital to a multitude of scientific fields. Oftentimes spectroscopic methods are employed to decipher the composition of these mixtures. However, the sheer density of spectral features present in spectroscopic databases can make unambiguous assignment to individual species challenging. Yet, components of a mixture are commonly chemically related due to environmental processes or shared precursor molecules. Therefore, analysis of the chemical relevance of a molecule is important when determining which species are present in a mixture. In this paper, we combine machine-learning molecular embedding methods with a graph-based ranking system to determine the likelihood of a molecule being present in a mixture based on the other known species and/or chemical priors. By incorporating this metric in a rotational spectroscopy mixture analysis algorithm, we demonstrate that the mixture components can be identified with extremely high accuracy (≥97%) in an efficient manner.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpca.4c03580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The determination of chemical mixture components is vital to a multitude of scientific fields. Oftentimes spectroscopic methods are employed to decipher the composition of these mixtures. However, the sheer density of spectral features present in spectroscopic databases can make unambiguous assignment to individual species challenging. Yet, components of a mixture are commonly chemically related due to environmental processes or shared precursor molecules. Therefore, analysis of the chemical relevance of a molecule is important when determining which species are present in a mixture. In this paper, we combine machine-learning molecular embedding methods with a graph-based ranking system to determine the likelihood of a molecule being present in a mixture based on the other known species and/or chemical priors. By incorporating this metric in a rotational spectroscopy mixture analysis algorithm, we demonstrate that the mixture components can be identified with extremely high accuracy (≥97%) in an efficient manner.

Abstract Image

通过结构评估进行自动混合物分析
化学混合物成分的测定对许多科学领域都至关重要。通常情况下,我们采用光谱方法来破译这些混合物的成分。然而,由于光谱数据库中的光谱特征密度非常大,因此很难明确地将其归类到单个物种中。然而,由于环境过程或共享前体分子,混合物中的成分通常具有化学相关性。因此,在确定混合物中存在哪些物种时,分析分子的化学相关性非常重要。在本文中,我们将机器学习分子嵌入方法与基于图的排序系统相结合,根据其他已知物种和/或化学先验来确定混合物中存在分子的可能性。通过将这一指标纳入旋转光谱混合物分析算法,我们证明了混合物成分能以极高的准确率(≥97%)被高效地识别出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信