Gold(I)-Catalyzed Access to 1-Alkynyl C-Glycosides from 1-Silylated Alkynes: An Alternative Paradigm for the Direct and α-Stereoselective Alkynylation of Glycosides

IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Eliot Starck, Mathieu Pascaretti, Catherine Taillier, Aurélien Blanc, Vincent Dalla, Patrick Pale, Jean-Marc Weibel
{"title":"Gold(I)-Catalyzed Access to 1-Alkynyl C-Glycosides from 1-Silylated Alkynes: An Alternative Paradigm for the Direct and α-Stereoselective Alkynylation of Glycosides","authors":"Eliot Starck, Mathieu Pascaretti, Catherine Taillier, Aurélien Blanc, Vincent Dalla, Patrick Pale, Jean-Marc Weibel","doi":"10.1021/acscatal.4c04293","DOIUrl":null,"url":null,"abstract":"Analogous to <i>O</i>-glycosides, <i>C</i>-glycosides are natural products exhibiting various bioactivities. Alkynyl <i>C</i>-glycosides represent important key intermediates toward more complex derivatives; however, a convenient access through a single catalytic and highly stereocontrolled step remains an important and only partially solved challenge. Here, a mechanistically designed gold(I)-catalyzed silyl-assisted efficient and highly α-stereoselective process is reported. The postulated mechanism has been ascertained by combining <sup>1</sup>H, <sup>31</sup>P and VT NMR and in situ MS experiments.","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c04293","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Analogous to O-glycosides, C-glycosides are natural products exhibiting various bioactivities. Alkynyl C-glycosides represent important key intermediates toward more complex derivatives; however, a convenient access through a single catalytic and highly stereocontrolled step remains an important and only partially solved challenge. Here, a mechanistically designed gold(I)-catalyzed silyl-assisted efficient and highly α-stereoselective process is reported. The postulated mechanism has been ascertained by combining 1H, 31P and VT NMR and in situ MS experiments.
金(I)催化的从 1-硅烷化炔烃获得 1-炔基 C-糖苷的途径:糖苷的直接和 α-全选择性炔化的另一种范式
与 O 型糖苷类似,C 型糖苷也是具有各种生物活性的天然产物。炔基 C-糖苷是通向更复杂衍生物的重要关键中间体;然而,如何通过单一催化和高度立体可控的步骤方便地获得 C-糖苷仍然是一个重要的挑战,而且只得到了部分解决。本文报告了一种从机制上设计的金(I)催化硅烷辅助的高效、高α-立体选择性过程。通过结合 1H、31P 和 VT NMR 以及原位 MS 实验,确定了推测的机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Chemical Biology
ACS Chemical Biology 生物-生化与分子生物学
CiteScore
7.50
自引率
5.00%
发文量
353
审稿时长
3.3 months
期刊介绍: ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology. The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies. We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信