{"title":"Enantioselective Synthesis of Chiral 1,4-Enynes via Palladium-Catalyzed Branch-Selective Allylic C–H Alkylation","authors":"Yazhou Lou, Zihan Lin, Chenxi Wu, Zhong-Sheng Nong, Rui Liu, Liu-Zhu Gong","doi":"10.1021/acscatal.4c04642","DOIUrl":null,"url":null,"abstract":"We herein present the construction of a chiral 1,4-enyne featuring tertiary or quaternary stereogenic center via Pd-catalyzed branch-, enantio-, and diastereoselective allylic C–H alkylation. Alkynyl carbon bearing bulky substituents appeared to exhibit competitive reaction performance, and the desired chiral 1,4-enynes were obtained in up to 93% yield and with up to >20:1 b/l, >20:1 dr, and 98% ee. A gram-scale experiment, the feasible operation of benzothiazole ring, and the preparation of the key intermediate to access (+)-Breynolide and prostaglandin are represented as a demonstration of multifarious synthetic utility in chemical synthesis.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c04642","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We herein present the construction of a chiral 1,4-enyne featuring tertiary or quaternary stereogenic center via Pd-catalyzed branch-, enantio-, and diastereoselective allylic C–H alkylation. Alkynyl carbon bearing bulky substituents appeared to exhibit competitive reaction performance, and the desired chiral 1,4-enynes were obtained in up to 93% yield and with up to >20:1 b/l, >20:1 dr, and 98% ee. A gram-scale experiment, the feasible operation of benzothiazole ring, and the preparation of the key intermediate to access (+)-Breynolide and prostaglandin are represented as a demonstration of multifarious synthetic utility in chemical synthesis.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.