Zhenrong Zhang, Qiang Zhu, Liangjie Li, Huan Fei Wen, Hao Guo, Zongmin Ma, Ye Tian, Yasuhiro Sugawara, Yan Jun Li, Jun Tang, Jun Liu
{"title":"Direct Detection of the Magnetic Force and Field Coupling of Electronic Spins Using Photoinduced Magnetic Force Microscopy","authors":"Zhenrong Zhang, Qiang Zhu, Liangjie Li, Huan Fei Wen, Hao Guo, Zongmin Ma, Ye Tian, Yasuhiro Sugawara, Yan Jun Li, Jun Tang, Jun Liu","doi":"10.1021/acs.nanolett.4c03437","DOIUrl":null,"url":null,"abstract":"The intrinsic spin of the electron and its associated magnetic moment can provide insights into spintronics. However, the interaction is extremely weak, as is the case with the coupling between an electron’s spin and a magnetic field, and it poses significant experimental challenges. Here we demonstrate the direct measurement of polarized single NV<sup>–</sup> centers and their spin–spin coupling behaviors in diamond. By using photoinduced magnetic force microscopy, we obtain the extremely weak magnetic force coupling originating from the electron spin. The polarized spin state of NV<sup>–</sup> centers, transitioning from |0⟩ to |±1⟩, and their corresponding Zeeman effect can be characterized through their interaction with a magnetic tip. The result presents an advancement in achieving electron spin measurements by magnetic force, avoiding the need for manufacturing conductive substrates. This facilitates a better understanding and control of electron spin to novel electronic states for future quantum technologies.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"51 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03437","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The intrinsic spin of the electron and its associated magnetic moment can provide insights into spintronics. However, the interaction is extremely weak, as is the case with the coupling between an electron’s spin and a magnetic field, and it poses significant experimental challenges. Here we demonstrate the direct measurement of polarized single NV– centers and their spin–spin coupling behaviors in diamond. By using photoinduced magnetic force microscopy, we obtain the extremely weak magnetic force coupling originating from the electron spin. The polarized spin state of NV– centers, transitioning from |0⟩ to |±1⟩, and their corresponding Zeeman effect can be characterized through their interaction with a magnetic tip. The result presents an advancement in achieving electron spin measurements by magnetic force, avoiding the need for manufacturing conductive substrates. This facilitates a better understanding and control of electron spin to novel electronic states for future quantum technologies.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.