Weixuan Zhang, Xuanlin Pan, Junxin Yan, Lixuan Liu, Anmin Nie, Yingchun Cheng, Fusheng Wen, Congpu Mu, Kun Zhai, Jianyong Xiang, Bochong Wang, Tianyu Xue, Zhongyuan Liu
{"title":"High-Active Surface of Centimeter-Scale β-In2S3 for Attomolar-Level Hg2+ Sensing","authors":"Weixuan Zhang, Xuanlin Pan, Junxin Yan, Lixuan Liu, Anmin Nie, Yingchun Cheng, Fusheng Wen, Congpu Mu, Kun Zhai, Jianyong Xiang, Bochong Wang, Tianyu Xue, Zhongyuan Liu","doi":"10.1021/acs.nanolett.4c04047","DOIUrl":null,"url":null,"abstract":"Recognition layer materials play a crucial role in the functionality of chemical sensors. Although advancements in two-dimensional (2D) materials have promoted sensor development, the controlled fabrication of large-scale recognition layers with highly active sites remains crucial for enhancing sensor sensitivity, especially for trace detection applications. Herein, we propose a strategy for the controlled preparation of centimeter-scale non-layered ultrathin β-In<sub>2</sub>S<sub>3</sub> materials with tailored high-active sites to design ultrasensitive Hg<sup>2+</sup> sensors. Our results reveal that the highly active sites of non-layered β-In<sub>2</sub>S<sub>3</sub> materials are pivotal for achieving superior sensing performance. Selective detection of Hg<sup>2+</sup> at the 1 aM level is achieved via selective Hg–S bonding. Additionally, we evaluate that this sensor exhibits excellent performance in detecting Hg<sup>2+</sup> in the tap water matrix. This work provides a proof-of-concept for utilizing non-layered 2D films in high-performance sensors and highlights their potential for diverse analyte sensing applications.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"23 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04047","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recognition layer materials play a crucial role in the functionality of chemical sensors. Although advancements in two-dimensional (2D) materials have promoted sensor development, the controlled fabrication of large-scale recognition layers with highly active sites remains crucial for enhancing sensor sensitivity, especially for trace detection applications. Herein, we propose a strategy for the controlled preparation of centimeter-scale non-layered ultrathin β-In2S3 materials with tailored high-active sites to design ultrasensitive Hg2+ sensors. Our results reveal that the highly active sites of non-layered β-In2S3 materials are pivotal for achieving superior sensing performance. Selective detection of Hg2+ at the 1 aM level is achieved via selective Hg–S bonding. Additionally, we evaluate that this sensor exhibits excellent performance in detecting Hg2+ in the tap water matrix. This work provides a proof-of-concept for utilizing non-layered 2D films in high-performance sensors and highlights their potential for diverse analyte sensing applications.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.