f-π* Back Bonding Orbital Induced by Lutetium-Based Conducting MOF Promotes Highly Selective CO 2  to CH 4  at Low Potential

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Fuqing Yu, Guangyao Zhang, Minxing Shu, Hongming Wang
{"title":"f-π* Back Bonding Orbital Induced by Lutetium-Based Conducting MOF Promotes Highly Selective CO 2  to CH 4  at Low Potential","authors":"Fuqing Yu, Guangyao Zhang, Minxing Shu, Hongming Wang","doi":"10.1002/anie.202416467","DOIUrl":null,"url":null,"abstract":"The research on electrocatalytic carbon dioxide reduction (ECR) catalysts using renewable energy is particularly crucial in energy conversion studies, especially for viable hydrocarbon production. This study employs density functional theory calculations to screen a series of non-radioactive lanthanide two-dimensional metal-organic frameworks (MOFs) for product selectivity in ECR. Based on theoretical screening, our focus is on a lutetium (Lu)-based conducting MOF (Lu-HHTP), which exhibits a Faradaic efficiency of approximately 77% for methane (CH4) production and maintains a stable current density of -280 mA/cm2 at -1.1 V vs. RHE. In situ electrochemical experiments and material characterization demonstrate that the Lu sites possess high coordination stability and structural recoverability during catalytic CO2 reduction, attributed to the overlap between Lu's f-orbitals and the π*-orbitals of the ligand O, and the formation of back bonding orbitals between the f-orbitals of Lu and the π* orbitals of CO contribute increasing CH₄ selectivity and lowering the potential. This study leverages rare-earth MOF-type materials, offering a novel approach to addressing low conductivity and stabilizing rare-earth materials, thereby establishing a theoretical framework for the conversion of linearly adsorbed *CO into hydrocarbons.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202416467","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The research on electrocatalytic carbon dioxide reduction (ECR) catalysts using renewable energy is particularly crucial in energy conversion studies, especially for viable hydrocarbon production. This study employs density functional theory calculations to screen a series of non-radioactive lanthanide two-dimensional metal-organic frameworks (MOFs) for product selectivity in ECR. Based on theoretical screening, our focus is on a lutetium (Lu)-based conducting MOF (Lu-HHTP), which exhibits a Faradaic efficiency of approximately 77% for methane (CH4) production and maintains a stable current density of -280 mA/cm2 at -1.1 V vs. RHE. In situ electrochemical experiments and material characterization demonstrate that the Lu sites possess high coordination stability and structural recoverability during catalytic CO2 reduction, attributed to the overlap between Lu's f-orbitals and the π*-orbitals of the ligand O, and the formation of back bonding orbitals between the f-orbitals of Lu and the π* orbitals of CO contribute increasing CH₄ selectivity and lowering the potential. This study leverages rare-earth MOF-type materials, offering a novel approach to addressing low conductivity and stabilizing rare-earth materials, thereby establishing a theoretical framework for the conversion of linearly adsorbed *CO into hydrocarbons.
镥基导电 MOF 诱导的 f-π* 背键轨道在低电位下促进高选择性 CO 2 转化为 CH 4
利用可再生能源进行电催化二氧化碳还原(ECR)催化剂的研究在能源转换研究中尤为重要,特别是在可行的碳氢化合物生产中。本研究利用密度泛函理论计算筛选了一系列非放射性镧系二维金属有机框架 (MOF),以确定其在 ECR 中的产物选择性。在理论筛选的基础上,我们重点研究了一种基于镥(Lu)的导电 MOF(Lu-HHTP),它在甲烷(CH4)生产中的法拉第效率约为 77%,并能在 -1.1 V 对 RHE 的电压下保持 -280 mA/cm2 的稳定电流密度。原位电化学实验和材料表征证明,在催化 CO2 还原过程中,Lu 位点具有很高的配位稳定性和结构可恢复性,这归功于 Lu 的 f 轨道与配体 O 的 π* 轨道之间的重叠,以及 Lu 的 f 轨道与 CO 的 π* 轨道之间形成的反键轨道有助于提高 CH₄ 的选择性和降低电位。本研究利用稀土 MOF 型材料,提供了一种解决低传导性和稳定稀土材料的新方法,从而建立了线性吸附 *CO 转化为碳氢化合物的理论框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信