Joshua D. Marquez, Sean R. Gitter, Graham C. Gilchrist, Rhys W. Hughes, Brent S. Sumerlin, Austin M. Evans
{"title":"Electrochemical Postpolymerization Modification and Deconstruction of Macromolecules","authors":"Joshua D. Marquez, Sean R. Gitter, Graham C. Gilchrist, Rhys W. Hughes, Brent S. Sumerlin, Austin M. Evans","doi":"10.1021/acsmacrolett.4c00507","DOIUrl":null,"url":null,"abstract":"Electrolysis is an emerging approach to polymer postpolymerization modification, deconstruction, and depolymerization. Electrochemical reactions are particularly appealing for macromolecular transformations because of their high selectivity, ability to be externally monitored, and intrinsic scalability. Despite these desirable features and the recent resurgent use of small-molecule electrochemical reactions, the development of macromolecular electrolysis has been limited. Herein, we highlight recent examples of polymer transformations driven by heterogeneous redox chemistry. Throughout our exploration of macromolecular electrolysis, we provide our perspective on opportunities for continued investigation in this nascent field. Specifically, we highlight how targeted reaction development through deeper mechanistic insight will expand the scope of materials that can be (de)constructed with electrochemical methods. As this insight is developed, we expect macromolecular electrolysis to emerge as a high-functioning and complementary tool for macromolecular functionalization and deconstruction.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"31 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmacrolett.4c00507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Electrolysis is an emerging approach to polymer postpolymerization modification, deconstruction, and depolymerization. Electrochemical reactions are particularly appealing for macromolecular transformations because of their high selectivity, ability to be externally monitored, and intrinsic scalability. Despite these desirable features and the recent resurgent use of small-molecule electrochemical reactions, the development of macromolecular electrolysis has been limited. Herein, we highlight recent examples of polymer transformations driven by heterogeneous redox chemistry. Throughout our exploration of macromolecular electrolysis, we provide our perspective on opportunities for continued investigation in this nascent field. Specifically, we highlight how targeted reaction development through deeper mechanistic insight will expand the scope of materials that can be (de)constructed with electrochemical methods. As this insight is developed, we expect macromolecular electrolysis to emerge as a high-functioning and complementary tool for macromolecular functionalization and deconstruction.
期刊介绍:
ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science.
With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.