Signed total Roman domination and domatic numbers in graphs

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yubao Guo , Lutz Volkmann , Yun Wang
{"title":"Signed total Roman domination and domatic numbers in graphs","authors":"Yubao Guo ,&nbsp;Lutz Volkmann ,&nbsp;Yun Wang","doi":"10.1016/j.amc.2024.129074","DOIUrl":null,"url":null,"abstract":"<div><div>A signed total Roman dominating function (STRDF) on a graph <em>G</em> is a function <span><math><mi>f</mi><mo>:</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>⟶</mo><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></math></span> satisfying (i) <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>x</mi><mo>∈</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo></mrow></msub><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≥</mo><mn>1</mn></math></span> for each vertex <span><math><mi>u</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and its neighborhood <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo></math></span> in <em>G</em> and, (ii) every vertex <span><math><mi>u</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> with <span><math><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mo>−</mo><mn>1</mn></math></span>, there exists a vertex <span><math><mi>v</mi><mo>∈</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo></math></span> with <span><math><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>=</mo><mn>2</mn></math></span>. The minimum number <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>u</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo></math></span> among all STRDFs <em>f</em> on <em>G</em> is denoted by <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>s</mi><mi>t</mi><mi>R</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. A set <span><math><mo>{</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>}</mo></math></span> of distinct STRDFs on <em>G</em> is called a signed total Roman dominating family on <em>G</em> if <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>d</mi></mrow></msubsup><msub><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo><mo>≤</mo><mn>1</mn></math></span> for each <span><math><mi>u</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. We use <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>s</mi><mi>t</mi><mi>R</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> to denote the maximum number of functions among all signed total Roman dominating families on <em>G</em>. Our purpose in this paper is to examine the effects on <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>s</mi><mi>t</mi><mi>R</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> when <em>G</em> is modified by removing or subdividing an edge. In addition, we determine the number <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>s</mi><mi>t</mi><mi>R</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> for the case that <em>G</em> is a complete graph or bipartite graph.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005356","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A signed total Roman dominating function (STRDF) on a graph G is a function f:V(G){1,1,2} satisfying (i) xNG(u)f(x)1 for each vertex uV(G) and its neighborhood NG(u) in G and, (ii) every vertex uV(G) with f(u)=1, there exists a vertex vNG(u) with f(v)=2. The minimum number uV(G)f(u) among all STRDFs f on G is denoted by γstR(G). A set {f1,,fd} of distinct STRDFs on G is called a signed total Roman dominating family on G if i=1dfi(u)1 for each uV(G). We use dstR(G) to denote the maximum number of functions among all signed total Roman dominating families on G. Our purpose in this paper is to examine the effects on γstR(G) when G is modified by removing or subdividing an edge. In addition, we determine the number dstR(G) for the case that G is a complete graph or bipartite graph.
图表中的罗马人统治总数和统治人数签名
图 G 上的有符号总罗马占优函数 (STRDF) 是一个函数 f:V(G)⟶{-1,1,2},满足:(i) 对于 G 中的每个顶点 ux∈V(G) 及其邻域 NG(u),∑x∈NG(u)f(x)≥1;(ii) f(u)=-1 的每个顶点 u∈V(G),都存在 f(v)=2 的顶点 v∈NG(u)。在 G 上的所有 STRDF f 中,∑u∈V(G)f(u) 的最小数目用 γstR(G) 表示。如果对于每个 u∈V(G),∑i=1dfi(u)≤1,则 G 上不同 STRDF 的集合 {f1,...,fd}称为 G 上的有符号总罗马支配族。我们用 dstR(G) 表示 G 上所有有符号罗马支配族中函数的最大数目。本文的目的是研究当通过删除或细分一条边来修改 G 时对γstR(G) 的影响。此外,我们还确定了 G 是完整图或二叉图时的 dstR(G) 数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信