{"title":"Signed total Roman domination and domatic numbers in graphs","authors":"Yubao Guo , Lutz Volkmann , Yun Wang","doi":"10.1016/j.amc.2024.129074","DOIUrl":null,"url":null,"abstract":"<div><div>A signed total Roman dominating function (STRDF) on a graph <em>G</em> is a function <span><math><mi>f</mi><mo>:</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>⟶</mo><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></math></span> satisfying (i) <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>x</mi><mo>∈</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo></mrow></msub><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≥</mo><mn>1</mn></math></span> for each vertex <span><math><mi>u</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and its neighborhood <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo></math></span> in <em>G</em> and, (ii) every vertex <span><math><mi>u</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> with <span><math><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mo>−</mo><mn>1</mn></math></span>, there exists a vertex <span><math><mi>v</mi><mo>∈</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo></math></span> with <span><math><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>=</mo><mn>2</mn></math></span>. The minimum number <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>u</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo></math></span> among all STRDFs <em>f</em> on <em>G</em> is denoted by <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>s</mi><mi>t</mi><mi>R</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. A set <span><math><mo>{</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>}</mo></math></span> of distinct STRDFs on <em>G</em> is called a signed total Roman dominating family on <em>G</em> if <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>d</mi></mrow></msubsup><msub><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo><mo>≤</mo><mn>1</mn></math></span> for each <span><math><mi>u</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. We use <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>s</mi><mi>t</mi><mi>R</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> to denote the maximum number of functions among all signed total Roman dominating families on <em>G</em>. Our purpose in this paper is to examine the effects on <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>s</mi><mi>t</mi><mi>R</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> when <em>G</em> is modified by removing or subdividing an edge. In addition, we determine the number <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>s</mi><mi>t</mi><mi>R</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> for the case that <em>G</em> is a complete graph or bipartite graph.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005356","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A signed total Roman dominating function (STRDF) on a graph G is a function satisfying (i) for each vertex and its neighborhood in G and, (ii) every vertex with , there exists a vertex with . The minimum number among all STRDFs f on G is denoted by . A set of distinct STRDFs on G is called a signed total Roman dominating family on G if for each . We use to denote the maximum number of functions among all signed total Roman dominating families on G. Our purpose in this paper is to examine the effects on when G is modified by removing or subdividing an edge. In addition, we determine the number for the case that G is a complete graph or bipartite graph.
图 G 上的有符号总罗马占优函数 (STRDF) 是一个函数 f:V(G)⟶{-1,1,2},满足:(i) 对于 G 中的每个顶点 ux∈V(G) 及其邻域 NG(u),∑x∈NG(u)f(x)≥1;(ii) f(u)=-1 的每个顶点 u∈V(G),都存在 f(v)=2 的顶点 v∈NG(u)。在 G 上的所有 STRDF f 中,∑u∈V(G)f(u) 的最小数目用 γstR(G) 表示。如果对于每个 u∈V(G),∑i=1dfi(u)≤1,则 G 上不同 STRDF 的集合 {f1,...,fd}称为 G 上的有符号总罗马支配族。我们用 dstR(G) 表示 G 上所有有符号罗马支配族中函数的最大数目。本文的目的是研究当通过删除或细分一条边来修改 G 时对γstR(G) 的影响。此外,我们还确定了 G 是完整图或二叉图时的 dstR(G) 数。