{"title":"Accelerated intelligent prediction and analysis of mechanical properties of magnesium alloys based on scaled super learner machine-learning algorithms","authors":"","doi":"10.1016/j.mechmat.2024.105168","DOIUrl":null,"url":null,"abstract":"<div><div>The use of machine learning algorithms in magnesium (Mg) alloys has evolved a scientific innovation for lightweight. The dataset was compiled by collecting data from the experiment and utilizing machine learning (ML) models to predict the mechanical properties of 348 Mg alloys. The proportion between the predicted and experimental results produced by different ML models demands more advanced regression methods to obtain better results. Utilizing Mg alloy descriptors as input variables and mechanical properties as output variables, four different ML models were employed namely (i.e.) <strong>Random Forest (RF), Extra Tree (ET), Gradient Boost (GB), and Extreme Gradient Boost (XGBoost)</strong> to resolve this difficult problem. Each single algorithm aimed to predict the mechanical properties of Mg alloy i.e. Ultimate Tensile Strength (UTS), Yield Strength (YS), and Elongation (EL). Subsequently, the data-driven intelligent prediction modeling technique called scaled Super Learner (SL) was employed to integrate the single models into the stacked model approach to enhance prediction accuracy. The results obtained using scaled Super Learner demonstrated enhanced prediction accuracy for UTS, YS, and EL. The findings further demonstrate enhanced prediction ability by outperforming other approaches as demonstrated by lower Root Mean Squared Error (RMSE) and higher R-Squared (R<sup>2</sup>) compared to previous studies. <strong>The reason for choosing Scaled Super Learner is because of its robustness and resistance to overfitting. Scaled Super Learner is also widely known for its better scalability, simplicity, and ability to handle noisy</strong>. The scaled Super Learner is an optimal approach for predicting the properties of Mg alloys. The proposed scaled Super learner serves as a tool for predicting Mg alloy properties.</div></div>","PeriodicalId":18296,"journal":{"name":"Mechanics of Materials","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167663624002606","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The use of machine learning algorithms in magnesium (Mg) alloys has evolved a scientific innovation for lightweight. The dataset was compiled by collecting data from the experiment and utilizing machine learning (ML) models to predict the mechanical properties of 348 Mg alloys. The proportion between the predicted and experimental results produced by different ML models demands more advanced regression methods to obtain better results. Utilizing Mg alloy descriptors as input variables and mechanical properties as output variables, four different ML models were employed namely (i.e.) Random Forest (RF), Extra Tree (ET), Gradient Boost (GB), and Extreme Gradient Boost (XGBoost) to resolve this difficult problem. Each single algorithm aimed to predict the mechanical properties of Mg alloy i.e. Ultimate Tensile Strength (UTS), Yield Strength (YS), and Elongation (EL). Subsequently, the data-driven intelligent prediction modeling technique called scaled Super Learner (SL) was employed to integrate the single models into the stacked model approach to enhance prediction accuracy. The results obtained using scaled Super Learner demonstrated enhanced prediction accuracy for UTS, YS, and EL. The findings further demonstrate enhanced prediction ability by outperforming other approaches as demonstrated by lower Root Mean Squared Error (RMSE) and higher R-Squared (R2) compared to previous studies. The reason for choosing Scaled Super Learner is because of its robustness and resistance to overfitting. Scaled Super Learner is also widely known for its better scalability, simplicity, and ability to handle noisy. The scaled Super Learner is an optimal approach for predicting the properties of Mg alloys. The proposed scaled Super learner serves as a tool for predicting Mg alloy properties.
期刊介绍:
Mechanics of Materials is a forum for original scientific research on the flow, fracture, and general constitutive behavior of geophysical, geotechnical and technological materials, with balanced coverage of advanced technological and natural materials, with balanced coverage of theoretical, experimental, and field investigations. Of special concern are macroscopic predictions based on microscopic models, identification of microscopic structures from limited overall macroscopic data, experimental and field results that lead to fundamental understanding of the behavior of materials, and coordinated experimental and analytical investigations that culminate in theories with predictive quality.