Khalid Maniah , Fatimah Olyan Al-Otibi , Sara Mohamed , Basant A. Said , Mohamed Ragab AbdelGawwad , Mohamed Taha Yassin
{"title":"Synergistic antibacterial activity of biogenic AgNPs with antibiotics against multidrug resistant bacterial strains","authors":"Khalid Maniah , Fatimah Olyan Al-Otibi , Sara Mohamed , Basant A. Said , Mohamed Ragab AbdelGawwad , Mohamed Taha Yassin","doi":"10.1016/j.jksus.2024.103461","DOIUrl":null,"url":null,"abstract":"<div><div>The prevalence of hospital-acquired infections caused by drug resistant bacterial pathogens is a major health risk, leading to a considerable number of deaths and illnesses globally. Therefore, it is essential to develop new combinations of antimicrobial agents to effectively manage drug-resistant bacteria that are responsible for nosocomial infections. A current study aims to synthesize silver nanoparticles (AgNPs) from the seeds of <em>Trigonella foenum-graecum</em> (fenugreek). The AgNPs exhibited a spherical morphology and had an average particle size of 29.75 nm. In addition, XRD examination verified the presence of a face-centered cubic (fcc) lattice structure in the biosynthesized AgNPs, while FTIR study demonstrated the existence of several functional groups such as phenols, alkanes, and amines. The biogenic AgNPs exhibited the most potent antibacterial effect against <em>E. coli</em> strain, with relative inhibitory zone of 18.43 ± 0.35 mm and a minimum inhibitory concentration (MIC) of 50 µg/ml. In addition, the most potent antibacterial effect of AgNPs combined with colistin was observed against <em>Acinetobacter baumannii</em> strain, while the greatest combined efficacy of AgNPs with norfloxacin was found against <em>Pseudomonas aeruginosa</em>, resulting in a relative increase in the fold of inhibition area (IFA) of 0.53 and 0.35, respectively. In conclusion, the potent antibacterial and synergistic effect of AgNPs with antibiotics highlights their potential application of this combination in controlling nosocomial infections in health care settings.</div></div>","PeriodicalId":16205,"journal":{"name":"Journal of King Saud University - Science","volume":"36 10","pages":"Article 103461"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1018364724003732/pdfft?md5=f7086f6dcb8cc4800503db2628fc26e8&pid=1-s2.0-S1018364724003732-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University - Science","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1018364724003732","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The prevalence of hospital-acquired infections caused by drug resistant bacterial pathogens is a major health risk, leading to a considerable number of deaths and illnesses globally. Therefore, it is essential to develop new combinations of antimicrobial agents to effectively manage drug-resistant bacteria that are responsible for nosocomial infections. A current study aims to synthesize silver nanoparticles (AgNPs) from the seeds of Trigonella foenum-graecum (fenugreek). The AgNPs exhibited a spherical morphology and had an average particle size of 29.75 nm. In addition, XRD examination verified the presence of a face-centered cubic (fcc) lattice structure in the biosynthesized AgNPs, while FTIR study demonstrated the existence of several functional groups such as phenols, alkanes, and amines. The biogenic AgNPs exhibited the most potent antibacterial effect against E. coli strain, with relative inhibitory zone of 18.43 ± 0.35 mm and a minimum inhibitory concentration (MIC) of 50 µg/ml. In addition, the most potent antibacterial effect of AgNPs combined with colistin was observed against Acinetobacter baumannii strain, while the greatest combined efficacy of AgNPs with norfloxacin was found against Pseudomonas aeruginosa, resulting in a relative increase in the fold of inhibition area (IFA) of 0.53 and 0.35, respectively. In conclusion, the potent antibacterial and synergistic effect of AgNPs with antibiotics highlights their potential application of this combination in controlling nosocomial infections in health care settings.
期刊介绍:
Journal of King Saud University – Science is an official refereed publication of King Saud University and the publishing services is provided by Elsevier. It publishes peer-reviewed research articles in the fields of physics, astronomy, mathematics, statistics, chemistry, biochemistry, earth sciences, life and environmental sciences on the basis of scientific originality and interdisciplinary interest. It is devoted primarily to research papers but short communications, reviews and book reviews are also included. The editorial board and associated editors, composed of prominent scientists from around the world, are representative of the disciplines covered by the journal.