Efficient recovery of functional biomolecules from shrimp (Litopenaeus vannamei) processing waste for food and health applications via a successive co-culture fermentation approach
{"title":"Efficient recovery of functional biomolecules from shrimp (Litopenaeus vannamei) processing waste for food and health applications via a successive co-culture fermentation approach","authors":"Varongsiri Kemsawasd , Weeraya Karnpanit , Sirinapa Thangsiri , Pairote Wongputtisin , Apinun Kanpiengjai , Chartchai Khanongnuch , Uthaiwan Suttisansanee , Chalat Santivarangkna , Suwapat Kittibunchakul","doi":"10.1016/j.crfs.2024.100850","DOIUrl":null,"url":null,"abstract":"<div><div>This study developed a food-grade fermentation process that efficiently isolated proteins and minerals from shrimp-processing waste (SPW). The in vitro antioxidant and enzyme inhibitory effects of SPW hydrolysates obtained from the fermentation process were investigated. SPW broths were prepared from the head (SPW-SH) and body carapace (SPW-SS) of Pacific white shrimp (<em>Litopenaeus vannamei</em>) and fermented using a 5-day successive co-culture fermentation approach with <em>Bacillus amyloliquefaciens</em> TISTR-1880 and <em>Lactobacillus casei</em> TBRC-388. This bacterial combination demonstrated optimal efficiency in extracting proteins (up to 93% deproteinization) and minerals (up to 83% demineralization) from SPW samples compared with other studied co-culture combinations. The resulting SPW-SH and SPW-SS hydrolysates were rich in proteins (∼70 and ∼59 g/100 g dry weight, respectively). They exhibited significantly enhanced antioxidant potential compared to their corresponding non-fermented controls at up to 2.3 and 3.7-fold higher, respectively as determined by the ORAC, FRAP, and DPPH radical scavenging assays. The two SPW hydrolysates also had significantly higher inhibitory activities against angiotensin-converting enzyme, α-amylase, and lipase than the controls, indicating their improved anti-hypertension, anti-diabetes, and anti-obesity properties, respectively; however, both SPW-SH and SPW-SS hydrolysates did not inhibit α-glucosidase at the tested concentrations. The SPW hydrolysates produced in this study showed high potential for use as functional ingredients in food and nutraceutical products. Knowledge gained from this study can promote the prospective valorization of industrial SPW as an inexpensive source of functional biomolecules for food-related applications using a fermentation approach. This will increase the commercial value of SPW and reduce the environmental impact.</div></div>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266592712400176X/pdfft?md5=5fdfd4f6f23ff7424ae01a3ef7c2ef77&pid=1-s2.0-S266592712400176X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Food Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266592712400176X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study developed a food-grade fermentation process that efficiently isolated proteins and minerals from shrimp-processing waste (SPW). The in vitro antioxidant and enzyme inhibitory effects of SPW hydrolysates obtained from the fermentation process were investigated. SPW broths were prepared from the head (SPW-SH) and body carapace (SPW-SS) of Pacific white shrimp (Litopenaeus vannamei) and fermented using a 5-day successive co-culture fermentation approach with Bacillus amyloliquefaciens TISTR-1880 and Lactobacillus casei TBRC-388. This bacterial combination demonstrated optimal efficiency in extracting proteins (up to 93% deproteinization) and minerals (up to 83% demineralization) from SPW samples compared with other studied co-culture combinations. The resulting SPW-SH and SPW-SS hydrolysates were rich in proteins (∼70 and ∼59 g/100 g dry weight, respectively). They exhibited significantly enhanced antioxidant potential compared to their corresponding non-fermented controls at up to 2.3 and 3.7-fold higher, respectively as determined by the ORAC, FRAP, and DPPH radical scavenging assays. The two SPW hydrolysates also had significantly higher inhibitory activities against angiotensin-converting enzyme, α-amylase, and lipase than the controls, indicating their improved anti-hypertension, anti-diabetes, and anti-obesity properties, respectively; however, both SPW-SH and SPW-SS hydrolysates did not inhibit α-glucosidase at the tested concentrations. The SPW hydrolysates produced in this study showed high potential for use as functional ingredients in food and nutraceutical products. Knowledge gained from this study can promote the prospective valorization of industrial SPW as an inexpensive source of functional biomolecules for food-related applications using a fermentation approach. This will increase the commercial value of SPW and reduce the environmental impact.
期刊介绍:
Current Research in Food Science is an international peer-reviewed journal dedicated to advancing the breadth of knowledge in the field of food science. It serves as a platform for publishing original research articles and short communications that encompass a wide array of topics, including food chemistry, physics, microbiology, nutrition, nutraceuticals, process and package engineering, materials science, food sustainability, and food security. By covering these diverse areas, the journal aims to provide a comprehensive source of the latest scientific findings and technological advancements that are shaping the future of the food industry. The journal's scope is designed to address the multidisciplinary nature of food science, reflecting its commitment to promoting innovation and ensuring the safety and quality of the food supply.